Как понизить напряжение включения у динистора. Полупроводниковые диоды. Эквивалентная замена туннельных диодов

Серийно выпускаемые динисторы по электрическим параметрам не всегда отвечают творческим интересам радио­любителей-конструкторов Нет, например, динисторов с напряжением вклю­чения 5...10 и 200...400 В. Все дииисторы имеют значительный разброс значения этого классификационного параметра, который к тому же зависит еще от тем­пературы окружающей среды Кроме то­го. они рассчитаны на сравнительно малый коммутируемый ток (менее 0.2 А), а значит, небольшую комму­тируемую мощность. Исключено плав­ное регулирование напряжения включения, что ограничивает область при­менения динисторов. Все это заставляет радиолюбителей прибегать к созданию аналогов динисторов с желаемыми па­раметрами.

Поиском такого аналога дииистора длительное время занимался и я. Исходным был вариант аналога, состав­ленный из стабилитрона Д814Д и тринистора КУ202Н (рис i).

Пока напряжение на аналоге меньше напряжения стабилизации стабилитрона, аналог закрыт и ток через него не течет. При достижении напряжения стабилизации стабилитрона он открывается сам, от крывает триннстор и аналог в целом. В результате в цепи, в которую аналог включен, появляется ток. Значение это­го тока определяется свойствами тринистора н сопротивлением н aг рузки. Ис­пользуя тринисторы серии КУ202 с буквенными индексами Б, В, Н и один и тот же стабилитрон Д814Д, произведено 32 измерения тока и напряжения вклю­чения аналога дииистора. Анализ показывает. что среднее значение тока включения аналога равно примерно 7 мА. а напряжения включения - 14,5±1 В. Разброс напряжении вклю­чения объясняется неодинаковостью со­противления управляющих р-н перехо­дов используемых трннисторов.

Напряжение включения uвкл , такого аналога можно рассчитать по упрощенной формуле: uвкл =uст+ u yэ где uст - напряжение стабилизации стабилитрона, uуэ - падение наприжения на управляющем переходе тринистора.

При изменении температуры трини­стора падение напряжения на его управляющем переходе тоже изменя­ется, но незначительно. Это приводит к некоторому изменению напряжения включения аналога. Например, для три­нистора КУ202Н при изменении темпе­ратуры его корпуса от 0 до 50 °С на­пряжение включения изменялось в пре­делах 0.3...0,4 % по отношению к значе­нию этого параметра при темперагуре 25 С.

Семейство вольт - амперных характеристик такого варианта аналога показано на рис. 3, их пусковой участок - на рис 4. а зависимость напряжения включения от сопротивления резистора - на рис 5. Как показал анализ напряжение вклю­чения такого аналога прямо пропор­ционально сопротивлению резистора. Это напряжение можно рассчитать по формуле uвкл.р = uст+uуэ+iвкл.уэ*r1 где uв кл р - напряжение включения ре -гулируемого аналога, iвкл у э - ток включения регулируемого аналога ди­иистора по управляющему электроду.

Такой аналог свободен практически от всех недостатков динисторов, кро­ме температурной нестабильности Как известно, при повышении температуры тринистора его ток включения умень­шается. В регулируемом аналоге это приводит к уменьшению напряжения включения и тем значительнее, чем больше сопротивление резистора. По­этому стремиться к большому повышению напряжения включения перемен­ным резистором не cneдуeт, чтобы не ухудшать температурную стабильность работы аналога.

Как показали эксперименты, эта не­стабильность небольшая. Так, для ана­лога с тринистором КУ202Н при изме­нении температуры его корпуса в пределах 10...30 °С напряжение включения изменялось, с резистором i кОм - на ±1.8 %. при 2 кОм - на ±2,6 %, при 3 кОм - на ±3 %, при 4 кОм - на ±3,8 % . Увеличение сопротивления на i кОм приводило к повышению напря­жения порога включения регулируемого аналога в среднем на 20% по сравнению с напряжением включения исход­ного аналога динистора. Следовательно, средняя точность напряжения вклю­чения регулируемого аналога луч­ше 5 %.

Температурная нестабильность ана­лога с триннстором КУ101Г меньше, что объясняется относительно малым током включения (0,8...1,5 мА). Напри­мер. при таком же изменении температуры и резисторе сопротивлением 10, 20, 30 и 40 кОм температурная нестабильность была соответственно +-0.6 %, +-07.%, +-0.8%,+-1%. Уве­личение сопротивления резистора на каждые 10 кОм повышало уровень напряжения включения аналога на 24 % по сравнению с напряжением аналога без резистора. Таким образом, аналог с тринистором КУ101Г обладает высо­кой точностью напряжения включе­ния - его температурная нестабиль­ность менее i %, а с тринистором КУ202Н - несколько худшей точностью напряжения включений (в этом случае сопротивление резистора ri должно быть 4,7 кОм).

При обеспечении теплового контакта между тринистором и стабилитроном температурная нестабильность аналога может быть еще меньшей, поскольку у стабилитронов с напряжением стабили­зации больше 8 В температурный коэф­фициент напряжения стабилизации по­ложителен, а температурный коэффи­циент напряжения открывания тринисторов отрицателен.

Повысить термосгабильность регу­лируемого аналога дииистора с мощным тринистором можно включением переменного резистора в анодную цепь маломощного тринистора (рис. б).

Ре­зистор r 1 ограничивает ток управляю­щего электрода тринистора vsi и повышает напряжение включения его на 12%. А переменный резистор r 2 по­зволяет регулировать напряжение включения трниистора vs 2.

Улучшение температурной стабиль­ности такого варианта аналога обьясняется тем, что с увеличением сопро­тивления резистора r 2 уменьшается ток включения аналога но управляю­щему электроду и увеличивается ток включения ею по аноду. А так как с изменением температуры в этом случае ток управляющего электрода уменьша­ется меньше и что суммарный ток вклю­ чения аналога увеличивается, то для эквивалентного повышения напряжения включения аналога нужно меньшее соп­ротивление резистора r 2 - это и созда­ет благоприятные условия для повы­шения температурной стабильности аналога.

Чтобы реализовать термостабиль­ность такого аналога, ток открывания тринистора vs 2 должен быть 2...3 мА - больше тока открывания тринистора vs1 , чтобы его температурные измене­ния не влияли на работу аналога. Эксперимент показал, что напряжение включения термостабильного аналога при изменении температуры его элемен­тов от 20 до 70 °С практически не из­менилось.

Недостаток такого варианта аналога динистора - сравнительно узкие пре­делы регулировки напряжения включе­ния переменным резистором r 2. Они тем уже, чем больше ток включения тринистора vs 2. Поэтому, чтобы не ухуд­шать термостабильность аналога, надо использовать в нем тринисторы с воз­можно меньшим током включения. Диа­пазон регулировки напряжения включе­ния аналога можно расширить путем применения стабилитронов с различным напряжением стабилизации.

Регулируемые аналоги динистора найдут применение в автоматике и теле­механике, релаксационных генераторах, электронных регуляторах, пороговых и многих других радиотехнических устрой­ствах

Раздел: [Регуляторы мощности]
Сохрани статью в:

Динистор — это двухэлектродный прибор, разновидность тиристора и, как я уже говорил, не полностью управляемый ключ, который можно выключить, только снизив ток, проходящий через него. Состоит он из четырех чередующихся областей различного типа проводимости и имеет три np-перехода. Соберем гипотетическую схему, похожую на ту, что мы использовали для изучения диода, но добавим в нее переменный резистор, а диод заменим динистором:

Итак, сопротивление резистора максимально, прибор показывает «0». Начинаем уменьшать сопротивление резистора. Напряжение на динисторе растет, ток по-проежнему не наблюдается. При дальнейшем уменьшении сопротивления в определенный момент времени на динисторе окажется напряжение, которое в состоянии его открыть (U откр ). Динистор тут же открывается и величина тока будет зависеть лишь от сопротивления цепи и самого открытого динистора – «ключ» сработал.

Как же закрыть ключ? Начинаем уменьшать напряжение – ток уменьшается, но только за счет увеличения сопротивления переменного резистора, состояние динистора остается прежним. В определенный момент времени ток через динистор уменьшается до определенной величины, которую принято называть током удержания (I уд ). Динистор мгновенно закроется, ток упадет до «0» — ключ закрылся.

Таким образом динистор открывается, если напряжение на его электродах достигнет U откр и закрывается, если ток через него меньше I уд. Для каждого типа динистора, само собой, эти величины различны, но принцип работы остается один и тот же. Что произойдет если динистор включить «наоборот»? Собираем еще одну схему, поменяв полярность включения батареи.

Сопротивление резистора максимально, тока нет. Увеличиваем напряжение – тока все равно нет и не будет до тех пор, пока напряжение на динисторе не превысит максимально допустимое. Как только привысит – динистор просто сгорит. Попробуем то, о чем мы с вами говорили, изобразить на координатной плоскости, на которой по оси Х отложим напряжение на динисторе, по Y — ток через него:

Таким образом, в одну сторону динистор ведет себя как обычный диод в обратном включении (просто заперт, закрыт), в другую лавинообразно открывается но лишь при определенном на нем напряжении или так же закрывается, как только ток через открытый прибор снизится ниже заданного паспортного значения.

Таким образом, основные параметры динистора можно свести к нескольким значениям:

— Напряжение открывания;
— Минимальный ток удержания;
— Максимально допустимый прямой ток;
— Максимально допустимое обратное напряжение;
— Падение напряжени на открытом динисторе.

Динисторы – это разновидность полупроводниковых приборов, точнее – неуправляемых тиристоров. В своей структуре он содержит три p — n перехода и имеет четырёхслойную структуру.

Его можно сравнить с механическим ключом, то есть, прибор может переключаться между двумя состояниями – открытое и закрытое. В первом случае электрическое сопротивление стремится к очень низким величинам, во втором же, наоборот – может достигать десятков и сотен Мом. Переход между состояниями происходит скачкообразно.

Вконтакте

Динистор DB 3

Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.

Как работает прибор?

Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.

В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.

Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.

В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.

Динистор db 3. Описание, характеристики и аналоги

Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.

Характеристики прибора:

  • Напряжение открытого динистора – 5В
  • Максимальный ток открытого динистора – 0.3А
  • Импульсный ток в открытом состоянии – 2А
  • Максимальное напряжение закрытого прибора – 32В
  • Ток в закрытом приборе – 10А

Динистор db 3 может работать при температурах от -40 до 70 градусов Цельси я.

Проверка db 3

Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.

К сожалению, из-за технических особенностей данного элемента, проверить его обычным мультиметром не получится . Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента.

Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.

Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода . В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.

Помимо данной схемы, существует способ проверки с помощью осциллографа .

Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.

Аналоги db 3

Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов :

  • HT-32
  • Отечественный КН102А

Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.


Рис. 11.5 Разрез (а), структурная (б) и принципиальная (в) схемы замещения тиристора двумя транзисторами

Для объяснения теории работы тиристора широко используют схему замещения двумя транзисторами VT1 и VT2 (рис.11.5). В этой схеме тиристор мысленно разрезается и раздвигается по переходу j 2 на два транзистора VT1–p 1 –n 1 –p 2 , VT2–n 1 –p 2 –n 2 , соединенных между собой по схеме с ОЭ. При этом для объяснения работы данной схемы можно выделить две цепи: первая цепь – замыкающаяся через Э1-Б1-К2-Э2, вторая цепь – Э1-К1-Б2-Э2.

Рассмотрим основные соотношения между токами транзисторов в схеме замещения.

11.7.1 Принцип работы тиристора по схеме замещения при IG=0

Рассмотрим работу схемы замещения при токе управления IG=0.

Из схемы (рис. 11.5, в) видно:

Ток IК1 в VT1 I K1=IЭ1∙α1+IKO1 (11.1)

Ток IК1 одновременно является IБ2 , т.е. IБ2=IК1 (11.2)
Ток IК2VT2 равен IK2=IЭ2∙α2+IKO2 (11.3)
Ток IК2 одновременно является IБ1 , т.е. IБ1=IK2 (11.4)
где IЭ1, IБ1, IК1 – токи эмиттера, базы и коллектора VT1;

IЭ2, IБ2, IК2 – токи эмиттера, базы и коллектора VT2;

α1, α2 – коэффициенты передачи тока VT1 и VT2;

IKO1, IKO2 – обратный коллекторный ток VT1 и VT2.

Обозначим через ID общий ток утечки p–n перехода j2 , тогда

ID=IKO1+IKO2 . (11.5)
Из схемы замещения можно записать, что ток анода IA и катода IK равны:

IA = IK=IЭ1=IЭ2= IK1+ IK2 ; (11.6)

Подставим значение IK1 и IK2 из (11.1) и (11.3) получим:

IA = IA∙α1+ IA∙α2+ID ; (11.7)

Решим уравнение (11.7) относительно IA найдем

IA=ID /(1–(α1+α2)). (11.8)

Формула (11.8) является основным уравнением для объяснения физических процессов в тиристоре. Используя ее, рассмотрим особенности работы тиристора на участке ОА, когда тиристор закрыт, на АВ – процесс открытия, ВС – включенное состояние.

В транзисторах при малых значениях токов и IK коэффициенты α1 и α2 малы и (α1+ α2 ) < 1, т.е транзисторы VT1 и VT2 закрыты (тиристор закрыт) – участок ОА ВАХ (рис. 11.3).

С ростом тока IA , а следовательно IЭ1 , IK1 , IЭ2 и IK2

(α1+ α2 ) ≥ 1. (11.9)

Это объясняется тем, что через переход j 2 протекает незначительный ток утечки I D (мА или мкА), поэтому ток I K 1 =I Э1 α 1 будет очень мал. Следовательно, ток I Б2 =I К1 также мал и VT2 практически закрыт, поэтому ток по цепи 1 будет очень мал. Так как VT2 закрыт, то ток по цепи 2 будет мал, следовательно, VT1 будет практически закрыт, т.е. VT1 и VT2 удерживают друг друга в закрытом состоянии.




(11.10)
С увеличением тока I A на участке АВ (α1+ α2 ) увеличится, и в точке В (α1+ α2 )=1, поэтому из (11.8) следует, что ток IA резко возрастает, тиристор открывается

Напряжение между А и К уменьшается до падения напряжения на открытых переходах j1 , j2 , j3 (участок ВС ВАХ). При дальнейшем увеличении напряжения UF ВАХ тиристора аналогична ВАХ диода – участок CD.

11.7.2 Принцип работы тиристора при IG>0 (по схеме замещения)

Рассмотрим работу тиристора по схеме замещения при включении тока управления IG . В этом режиме под действием напряжения управления UG электроны из области n2 дополнительно инжектируются в область p2 , поэтому ток через j2 возрастает.

Для этого режима можно записать следующее уравнение:

IА=IК=IАa1+IАa2+IGa2+ID . (11.11)

Откуда, решив (11.11) относительно IA

IА=(ID+IGa2)/ (11.12)

Из (11.11) видно, что за счет тока IG нарастание тока происходит быстрее и a1+a2 приближается к 1 при меньших напряжениях UF . При токе IG2>IG1 напряжение переключения U(ВО)2 тиристора в открытое состояние происходит при меньшем значении U(ВО)1 .

Если IG=IGT , называемым отпирающим током управления, то ВАХ тиристора будет повторять ВАХ диода (рис. 11.3).

11.8 Конструктивное выполнение штыревого тиристора


Как и силовые диоды, тиристоры выполняются двух модификаций: штыревые и таблеточные. Отличительной особенностью от диодов служит изолированный вывод управляющего электрода (УЭ).

Недостаток конструкции: выпрямительный элемент жестко припаян к конструкции. У таблеточных тиристоров он как бы “плавает” (это хорошо).

Диодные тиристоры - динисторы находят широкое применение в различных устройствах автоматики. Однако такое использование динисторов имеет ряд недостатков, главный из которых заключается в следующем.

Напряжение включения самого низковольтного отечественного динистора КН102А составляет 20 В, а падение напряжения на нем в открытом состоянии - менее 2 В. Таким образом, к управляющему переходу тиристора после включения динистора прикладывается напряжение около 18 В. В то же время максимально допустимое напряжение на этом переходе для распространенных тиристоров серии К У 201, К У 202 равно всего лишь 10 В. А если еще учесть, что напряжение включения динисторов даже одного типа имеет разброс, достигающий 200%, то станет ясно, что управляющий переход тиристора испытывает чрезмерно большие перегрузки. Это и ограничивает применение динисторов для управления триодными тиристорами.

Если ваши ученики будут работать с реальными схемами, тогда они должны учиться на реальных схемах, когда это возможно. Если ваша цель - воспитывать теоретических физиков, то обязательно придерживайтесь абстрактного анализа, во что бы то ни стало! Но большинство из нас планирует, чтобы наши ученики сделали что-то в реальном мире с образованием, которое мы им предоставляем. «Впустую» время, затрачиваемое на строительство реальных цепей, принесет огромные дивиденды, когда придет время для их применения своих знаний к практическим проблемам.

В большинстве наук реалистичные эксперименты гораздо сложнее и дороже, чем электрические схемы . Ядерной физике, биологии, геологии и профессорам химии просто хотелось бы, чтобы их ученики применяли передовую математику к реальным экспериментам, не представляя угрозы безопасности и стоили меньше, чем учебник. Используйте удобство, присущее вашей науке, и заставьте этих учеников творить свою математику на множестве реальных схем!

В подобных случаях можно использовать двухполюсники - аналоги динисторов , отличающиеся тем, что их напряжения включения могут быть гораздо меньше напряжения включения самого низковольтного динистора.

Схема одного из аналогов - транзисторного динистора показана на рис. 1. Он состоит из транзисторов разной структуры, включенных так, что ток базы одного из них является током коллектора другого и наоборот. Другими словами, это устройство, охваченное глубокой положительной обратной связью.

Все тиристорные устройства обладают свойством гистерезиса. С электрической точки зрения, что такое «гистерезис»? Как это поведение отличается от поведения «нормальных» активных полупроводниковых компонентов, таких как биполярные или полевые транзисторы?

После включения, как правило, остается в состоянии «ня» и наоборот. Гистерезисное действие тиристоров часто называют фиксацией. Попросите ваших учеников связать этот термин с действием тиристора. Почему «фиксирует» подходящий термин для такого поведения? Могут ли ваши ученики думать о любых приложениях для такого устройства?

При подключении питания через эмиттерный переход транзистора Т1 течет ток базы, в результате чего транзистор открывается, а это вызывает появление тока базы транзистора Т2.

Открывание этого транзистора приводит к росту тока базы транзистора Т1 , и, следовательно, дальнейшему его открыванию. Процесс протекает лавинообразно, поэтому очень скоро оба транзистора оказываются в насыщенном состоянии.

Какое условие должно быть выполнено для того, чтобы электрическая проводимость проходила через одно из этих устройств? Включить: устройство должно превышать определенное пороговое напряжение до проведения проводимости. Выключите: ток через устройство должен быть доведен до минимального уровня, прежде чем устройство перестанет работать.

Хотя ответ может показаться очевидным для многих, стоит спросить своих учеников, как поведение сравнения сравнивается с обычным диодом. Тот факт, что диод Шокли называется «диодом» вообще, может обмануть некоторых ваших учеников мыслью, что он ведет себя как обычный диод.

Напряжение включения такого устройства при использовании, например, транзисторов МП116 и МП113 равно всего лишь нескольким долям вольта, то есть практически не отличается от напряжения насыщения этой пары транзисторов. Это не позволяет использовать такой двухполюсник в качестве переключающего прибора. Если же эмиттерные переходы транзисторов Т1 и Т2 шунтировать резисторами, как показано на рис. 2, то напряжение включения устройства значительно возрастет.

Попросите учащихся объяснить, как эти два устройства похожи. В чем они отличаются? Еще один хороший вопрос для обсуждения - различие между диодом Шокли и диодом Шоттки. Хотя имена очень похожи, эти два устройства, безусловно, нет! Выпрямители с силиконовым управлением могут быть смоделированы следующей транзисторной схемой . Объясните, как эта схема функционирует при наличии и отсутствии «запускающего» импульса напряжения на клемме затвора.

Положительная обратная связь, присущая этой схеме, дает ей гистерезисные свойства: после срабатывания «включено» она имеет тенденцию оставаться включенной. Когда «выключено», оно имеет тенденцию держаться подальше. Попросите учащихся продемонстрировать положительную реакцию «фиксации» этой схемы, нарисуя направления тока на диаграмме для рассматриваемого класса. Спросите своих учеников, почему цепь «ждет», пока импульс включения не включится, и почему он «защелкивается» после срабатывания.

Причина этого явления - в уменьшении глубины положительной обратной связи, так как в базу каждого транзистора теперь ответвляется только часть коллекторного тока другого. В результате лавинообразный процесс открывания транзисторов протекает при более высоком напряжении. Напряжение включения можно изменять с помощью резисторов R1 и R2 .

Самый маленький терминал - это ворота. Идентичность катода и анода может быть определена путем подключения одного тестового провода к клемме затвора и касания другого тестового провода к любому из других терминалов. Спросите своих учеников, как они знают, что терминал ворот является самым маленьким. Должен ли он быть самым маленьким терминалом? Кроме того, спросите их, что индикация непрерывности будет отличать катод от анода в тесте непрерывности, описанном в ответе.

Объясните, что происходит в каждой из этих схем при нажатии кнопочного выключателя и затем отпускается. Последующий вопрос: объясните, почему эти схемы не ведут себя одинаково. Пусть студенты объяснят свои ответы. В этом отношении они существенно отличаются от транзисторов.

Так, при их сопротивлениях, равных 5,1 кОм, напряжение включения составляет 9 В, при 3 кОм- 12 В. Результаты получены при плавном повышении напряжения на двухполюснике. Если же напряжение имеет импульсный характер, то включение может произойти и при меньших его величинах. Дело в том, что транзисторный аналог, как и обычный динистор чувствителен не только к величине приложенного к нему напряжения, но и к скорости его нарастания. Исключить возможность включения при напряжениях, меньших напряжения включения, можно, если шунтировать двухполюсник конденсатором С1 (см. рис. 2).

Обсудите этот принцип со своими учениками, если они еще не изучили его. Если они уже изучили его, используйте этот вопрос в качестве возможности для обзора. Студенты должны знать, что означает «двусторонний» со ссылкой на электронные компоненты, но этот вопрос дает хорошую возможность для них учиться, если они этого не делают! Что не так с наличием «чувствительного» тиристора в цепи?

Обсудите с учащимися, считают ли они, что схема лома - это такой механизм, который видит регулярное использование, или он редко активируется. Ученик электроники недавно научился создавать схемы усилителей звука, и это вдохновляет мечты о разработке супермощного усилителя для домашней развлекательной системы.

Как и у динистора, напряжение включения транзисторного аналога уменьшается при повышении температуры. Этот недостаток легко устраним заменой резисторов R1 и R2 терморезисторами.

Схема другого аналога динистора показана на рис. 3. Напряжение включения такого двухполюсника определяется цепочкой, образованной стабилитроном Д1 и управляющим переходом тиристора Д2 , между которыми распределяется напряжение, приложенное к выводам двухполюсника. Когда это напряжение становится равным напряжению включения, стабилитрон пробивается, и через управляющий переход тиристора течет ток. Тиристор открывается, шунтируя стабилитрон и напряжение на выводах двухполюсника резко уменьшается. Напряжение включения устройства, показанного на рис. 3, равно 8 В.

Вау, - говорит студент, - эти компоненты выглядят как действительно большие транзисторы, но они рассчитаны на большой поток. Как вы объясните этому возбужденному ученику, что эти устройства не будут работать в схеме усилителя? Верьте или нет, меня когда-то подошел восторженный студент с этим вопросом!

Обычно этот метод запуска считается недостатком устройства, поскольку он открывает возможность нежелательного запуска, вызванного нарушениями напряжения питания. Также укажите, какие средства могут использоваться для предотвращения ложного срабатывания от переходных процессов питания.

На рис. 4 приведена схема на триодном тиристоре Д5, в цепи управления которым применен последний из рассмотренных двухполюсников (стабилитрон Д6 и тиристор Д7). При закрытом тиристоре Д5 конденсатор С1 заряжается через нагрузку и резистор R2 током, выпрямленным диодами Д1-Д4.

Для уменьшения этих эффектов обычно предусмотрены схемы демпфера. Выражение, конечно же, является термином исчисления, означающим скорость изменения напряжения во времени. Важной концепцией обзора для этого вопроса является формула для емкости. Применение импульса напряжения на клемме затвора. Превышение напряжения «размыкания» анода на катоде.

Другие два метода, включающие напряжение, приложенное между анодным и катодным выводами устройства, часто являются случайными способами запуска. Обязательно обсудите со своими учениками причину, по которой чрезмерное может инициировать, основанное на исследовании межэлектродной емкости внутри транзисторов тиристорной модели.

Когда напряжение на конденсаторе становится равным напряжению включения двухполюсника, стабилитрон Д6 пробивается и открывает тиристор Д7. Конденсатор С1 разряжается через управляющий переход тиристора Д5 , в результате чего он также открывается и подключает нагрузку к выпрямителю на время, оставшееся до конца полупериода сетевого напряжения. В конце его тиристор закрывается, так как ток через него уменьшается до нуля, после чего цикл повторяется.

Выпадение низкого тока «Реверсивное срабатывание» затвора с импульсом напряжения «неправильной» полярности. Его схематический символ выглядит следующим образом. Этот вопрос дает хорошую возможность рассмотреть работу цепей делителя напряжения и, в частности, эту формулу.

Объясните, как функционирует однополярный транзистор в этой цепи. Однополюсные транзисторы являются гистерезисными, как и все тиристоры. Обозначения для каждого терминала могут быть неожиданными для ваших учеников, учитывая названия биполярных транзисторных терминалов!

С помощью переменного резистора R2 можно изменять ток заряда конденсатора С2, а следовательно, и момент открывания тиристора Д5, то есть регулировать среднюю величину напряжения на нагрузке.


Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А - анод, К - катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

В их регулярных разделах «Целевые идеи». Дизайн приписывают Андре де Герин. Рассмотрите каждую ошибку независимо. Для каждого из этих условий объясните, почему возникнут результирующие эффекты. Цель этого вопроса заключается в том, чтобы подойти к области устранения неисправностей схемы с точки зрения понимания того, что такое ошибка, а не только знать, что такое симптомы. Хотя это не обязательно реалистичная перспектива, это помогает студентам создавать фундаментальные знания, необходимые для диагностики неисправной схемы из эмпирических данных.


С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр, то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:
- если уменьшить напряжение между анодом и катодом до U = 0;
- если снизить анодный ток тиристора до величины, меньше тока удержания Iуд.
- подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).
Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного , так и в цепях переменного тока .

За такими вопросами следует следовать другие вопросы, которые задают учащимся определение вероятных ошибок на основе измерений. Если возможно, найдите спецификацию производителя для ваших компонентов, чтобы обсудить с вашими одноклассниками. Цель этого вопроса - заставить учащихся кинестетически взаимодействовать с предметом. Для тех учеников, которые являются кинестетическими по своей природе, это отличная помощь для фактического контакта с реальными компонентами, когда они узнают о своей функции.

Разумеется, этот вопрос также дает прекрасную возможность практиковать интерпретацию компонентных меток, использование мультиметра, таблиц доступа и т.д. Их символы и пин-код находятся на рисунке. Рисунок 1: Несколько тиристоров и триаков. Тиристор - улучшенный диод. Точно так же, как это делает диод, тиристор проводит ток, когда анод положителен по сравнению с катодом, но только если напряжение на затворе положительное и достаточный ток течет в затвор, чтобы включить устройство. Когда тиристор начинает подавать ток в ворота, это не имеет значения, и тиристор можно отключить только путем удаления тока между анодом и катодом.

Работа динистора и тиристора в цепях постоянного тока.
Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов.

В качестве динистора используем КН102А-Б.
Работает генератор следующим образом.
При нажатии кнопки Кн, через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи). Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор - С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2.
При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом, не более, например телефонный капсюль ТК-67-Н.
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

Симистор очень похож на тиристор, с той разницей, что он может вестись в обоих направлениях. Он имеет три электрода, называемых анодом 1, анодом 2 и воротами. Он используется для регулирования цепей переменного тока. Устройства, такие как ручные сверла или шары, можно управлять с помощью симистора. Тиристоры малой мощности и симисторы упакованы в те же корпуса, что и транзисторы, но устройства с высокой мощностью имеют совершенно другой корпус. Они показаны на рисунке. Их основным свойством является то, что их сопротивление очень велико, пока напряжение на их концах не превысит некоторого предопределенного значения.

У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (большее напряжения пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт, что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.

Носители заряда входят в канал у источника и выходят через слив. Ширина канала контролируется напряжением на электроде, называется воротом, который расположен между источником и стоком. Он изолирован от канала вблизи чрезвычайно тонкого слоя оксида металла.

Когда на входе нет напряжения, канал показывает свою максимальную проводимость. Поскольку напряжение на затворе является либо положительным, либо отрицательным, проводимость канала уменьшается. Когда на затворе нет напряжения, устройство не проводит. Больше напряжения на воротах, тем лучше устройство может проводить.


Устройство работает следующим образом.
В исходном состоянии тиристор закрыт и лампочка не горит. Нажмем на кнопку Кн в течении 1 – 2 секунды. Контакты кнопки размыкаются, цепь катода тиристора разрывается. В этот момент конденсатор С заряжается от источника питания через резистор R1. Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн. В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод - замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется».
Загорается лампочка по цепи: плюс батареи – нагрузка в виде лампочки – тиристор - замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго.
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
Для выключения лампочки необходимо кратковременно нажать на кнопку Кн. При этом основная цепь питания лампочки обрывается. Тиристор «закрывается». Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).
Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208.

Полупроводниковая поверхность на нижнем слое оксида, который расположен между клеммой источника и стока. Когда мы применяем положительное напряжение затвора, отверстия, находящиеся под оксидным слоем с отталкивающей силой и отверстиями, толкаются вниз с подложкой. Область истощения, населенная связанными отрицательными зарядами, которые связаны с атомами акцептора. Образуется канал электронов. Теперь, если между стоком и источником подается напряжение, ток свободно течет между источником и дренажем, а напряжение затвора управляет электронами в канале.

Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог.
Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3.



Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.
Аналог тиристора имеет два управляющих входа. Первый вход: А – Уэ1 (эмиттер - база транзистора Тр1). Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).
Аналог имеет: А – анод, К - катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.
Если управляющие электроды не использовать, то это будет динистор, с электродами А - анод и К - катод.
Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд), будут зависеть от свойств применяемых транзисторов.


Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2. А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4.

Если в схеме генератора звуковых частот (рис 1), вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5).
Напряжение питания такой схемы составит от 5 до 15 вольт. Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора. Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания. Потом можно заменить его на постоянный резистор.
Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке. Если ток в нагрузке превысит 1 ампер, сработает защита.

Стабилизатор состоит из:
- управляющего элемента – стабилитрона КС510, который определяет напряжение выхода;
- исполнительного элемента –транзисторов КТ817А, КТ808А, исполняющих роль регулятора напряжения;
- в качестве датчика перегрузки используется резистор R4;
- исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503.



На входе стабилизатора в качестве фильтра стоит конденсатор С1. Резистором R1 задается ток стабилизации стабилитрона КС510, величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт. Резистор R4, величиной 1,0 Ом, включен последовательно в цепь нагрузки. Резистор R5 задает начальный режим стабилизации выходного напряжения.
Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току. В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт., Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4. При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 - 2,0 вольта. Это есть напряжение перехода анод - катод открытого тиристора. Одновременно загорается светодиод Д1, сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 - 2,0 вольта.
Что бы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн, сбросив блокировку защиты. На выходе стабилизатора вновь будет напряжение 9 вольт, а светодиод погаснет.
Настройкой резистора R3, можно подобрать ток срабатывания защиты от 1 ампера и более. Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: