Гиббереллины (гормон растений). Как гиббереллин влияет на растения? Смотреть что такое "Гиббереллины" в других словарях

Открытие гормонов растений гиббереллинов связано с изучением болезни ри­са. В юго-восточных странах, в частности в Японии, распространена болезнь риса «баканэ», или болезнь дурных побегов. У растений, пораженных этой бо­лезнью, вытянутые бледные побеги. Японские ученые показали, что эта болезнь вызывается выделением гриба GibbereUafujikuroi. Из выделений этого гриба было получено кристаллическое вещество - гиббереллин. В дальнейшем выяснилось, что гиббереллины - широко распространенные среди растений вещества, об­ладающие высокой физиологической активностью и являющиеся, подобно аук­синам, естественными фитогормонами.

В настоящее время известно более 80 веществ, относящихся к группе гиббе­реллинов и обозначающихся номерами: ГА 1, ГA 2 и др. Не все гиббереллины об­ладают физиологической активностью. По химической структуре это производ­ные дитерпенов - дитерпеноиды, состоящие из четырех изопреновых остатков. Наиболее распространенный гиббереллин A 3 - гибберелловая ки­слота (ГК). Остальные гиббереллины различаются в основном по структуре боковых цепочек. Растения на разных этапах онтогенеза могут различаться по набору гиббереллинов, активность которых может быть различной.

Гиббереллины могут образовываться в разных, по преимуществу растущих частях растительного организма. Все же основное место синтеза гиббереллинов - это листья. Имеются данные, что гиббереллины образуются в пластидах. По-видимому, гиббереллины существуют в двух формах - свободной и связанной. Нередко наблюдаемое повышение содержания гиббереллинов связано с перехо­дом их из связанной в свободную (активную) форму. Так, гиббереллины способны связываться с сахарами, например с глюкозой. Образующиеся гиббереллингликозиды накапливаются главным образом в семенах. В отличие от ауксинов гиб­береллины передвигаются из листьев как вверх, так и вниз, как по ксилеме, так и по флоэме. Это пассивный процесс, не связанный с метаболизмом.

Образование гиббереллина в хлоропластах идет путем превращения мевалоновой кислоты в геранилгераниол и далее через каурен в гибберелловую ки­слоту. Мевалоновая кислота является предшественником как гиббереллина и цитокинина, так и важнейшего природного ингибитора роста - абсцизовой кислоты. Показано, что существует другой путь синтеза гиббереллинов, не за­висящий от мевалоновой кислоты и локализованный в цитоплазме.

Внешние условия оказывают влияние на образование и содержание гиббе­реллинов в растении. Во многих случаях под влиянием одного и того же внешнего фактора содержание ауксинов и гиббереллинов изменяется противоположным образом. Так, освещение увеличивает содержание гиббереллинов и уменьшает содержание ауксина. Большое влияние на содержание гиббереллинов оказыва­ет качество света. При выращивании растении на красном свете в них содер­жится больше гиббереллинов по сравнению с выращиванием на синем свете.

Улучшение питания растений азотом увеличивает содержание ауксинов, а со­держание гиббереллинов при этом снижается. Противоположные изменения в содержании ауксинов и гиббереллинов позволяют предполагать, что и в обра­зовании этих двух фитогормонов имеется общий предшественник. Им может быть ацетил-КоА. При его участии образуется как мевалоновая, так и β-кетоглутаровая кислота. Последняя является одним из предшественников при образо­вании ауксина через триптофан. В некоторых случаях наблюдается одновремен­ное падение содержания как ауксинов, так и гиббереллинов. Так, уменьшение влажности почвы, выращивание растений в стерильных условиях снижают со­держание как того, так и другого фитогормона. Содержание гиббереллинов меня­ется в процессе онтогенеза растительного организма. Очень сильно возрастает содержание гиббереллинов в процессе прорастания семян. Возможно, что в этом случае гиббереллины частично переходят из связанного в свободное состояние. Содержание гиббереллинов в листьях разных растений (кормовых бобов, сои, картофеля) в процессе их онтогенеза изменяется в соответствии с одновершин­ной кривой, возрастая вплоть до цветения, а затем уменьшаясь.

Физиологические проявления действия гиббереллинов

Наиболее общим и ярким проявлением физиологического действия- гибберел­лина является его способность резко усиливать рост стебля у карликовых форм различных растений. Причины карликовости различны. Генетическая карлико­вость вызвана изменениями на генном уровне и может быть связана с наруше­ниями в синтезе гиббереллинов. Вместе с тем карликовость может быть обу­словлена накоплением ингибиторов. В этом случае внесение гиббереллина лишь нейтрализует их действие. Обычно карликовость выражается в уменьшении дли­ны междоузлий стебля при сохранении их числа. Обработанные гиббереллином карликовые растения выравниваются по высоте с нормальными, однако в по­следующих поколениях карликовость продолжает сохраняться. Молекулярно-генетические исследования расширили наши представления об особенностях регуляции роста этим фитогормоном. Известно много мутантов, у которых от­сутствует этот гормон. Как правило такие гиббереллин-дефектные мутанты - карликовые растения, которые отличаются от нормальных одним геном, который кодирует образование гиббереллинов.

Гиббереллины заметно усиливают вытягивание стебля и у многих нормальных растений. Так, высота стебля у многих растений под влиянием опрыскивания гиббереллином увеличивается примерно на 30-50%. Существует определенная зависимость между скоростью роста стебля растений и содержанием гибберел­линов. Так, содержание гиббереллинов и ход роста стебля конопли хорошо кор­релируют друг с другом. Это свойство позволяет некоторым исследователям считать гиббереллин гормоном роста стебля. Увеличение роста стебля происхо­дит как за счет усиления деления клеток, так и за счет их растяжения. Влияние гиббереллинов на растяжение связано с образованием белка клеточной стенки экстенсина и повышением активности ферментов. Уже отмечалось, что на рост растяжением действует и ауксин, однако его эффект обусловлен в основном подкислением клеточной стенки. С ростом стебля и выходом растения из розеточного состояния (стрелкованием) связано влияние гиббереллина на зацветание длиннодневных растений в условиях короткого дня. Показано значение гиббе­реллинов для образования столонов у картофеля.

Гиббереллины, подобно ауксинам, участвуют в разрастании завязи и образо­вании плодов. Гиббереллины накапливаются в почках при выходе из покоящегося состояния. В соответствии с этим обработка гиббереллином вызывает прерыва­ние покоя у почек. Сходная картина наблюдается на семенах. Показано, что при поступлении воды в сухие семена зародыш выделяет гиббереллин, который диф­фундирует в алейроновый слой и стимулирует образование ряда ферментов, в том числе α-амилазы. При выходе семян из покоящегося состояния в них накап­ливаются гиббереллины, поэтому обработка гиббереллином ускоряет процессы прорастания семян ряда растений, активируя в них работу ферментов. Вместе с тем она может заменить действие красного света при прорастании светочувст­вительных семян. Как уже упоминалось, под влиянием красного света содер­жание гиббереллинов возрастает. Все это служит подтверждением взаимосвязи между действием фитохрома и гиббереллинов.

В ряде случаев при действии гиббереллина возрастает общая масса раститель­ного организма. Таким образом, он способствует не перераспределению пита­тельных веществ, а общему их накоплению. Имеются данные, что гибберелли­ны накапливаются в хлоропластах. На свету влияние гиббереллина, внесенного извне, сказывается сильнее. Все это указывает на значение гиббереллина для регуляции процесса фотосинтеза. Данные по этому вопросу противоречивы. Од­нако показано, что гиббереллин усиливает процесс фотосинтетического фосфорилирования, в первую очередь нециклического, и, как следствие, основных продуктов этого процесса - АТФ и НАДФН. Одновременно наблюдается снижение содержания хлорофилла. Следователь­но, под влиянием гиббереллина повышается интенсивность использования еди­ницы хлорофилла, возрастает ассимиляционное число. В темноте гиббереллин воздействует лишь на растяжение клеток, не вызывая возрастания интенсивно­сти их деления (К.З. Гамбург). Можно полагать, что в темноте гиббереллин влияет косвенно через изменение уровня содержания ауксинов. При разных проявле­ниях гиббереллин действует разными путями. При рассмотрении механизма дей­ствия фитогормонов мы к этому вернемся.

Еще одну группу важных ростовых гормонов растений, открытую благодаря ряду случайных обстоятельств и тонких наблюдений, составляют гиббереллины. В последнем десятилетии прошлого века японские рисоводы обнаружили на своих чеках появление чрезвычайно вытянутых проростков. Они стали (внимательно наблюдать за этими проростками, так как хороший фермер обычно рассматривает любое крупное растение как возможный материал для селекции сорта с целью улучшения его общей продуктивности. Однако эти высокие проростки никогда не доживали до созревания и лишь изредка зацветали. Болезнь была названа баканаэ (болезнь "дурных проростков"). В 1926 г. японский ботаник Куросава обнаружил, что эти проростки были заражены грибом, названным позднее Gibberella fujikuroi (представитель кл. Ascomycetes, или сумчатых грибов). Если споры гриба перенести с зараженного проростка на здоровое растение, то последнее заболевает и его рост становится аномальным. При выращивании гриба в колбе на искусственной среде в ней накапливается какое-то вещество, которое, будучи перенесено на растение-рецептор, вызывает у него чрезмерный рост - один из симптомов, типичных для болезни "дурных проростков". Это вещество было названо гиббереллином (производное от Gibberella).

Рис. 9.19. Структурная формула гибберелловой кислоты (ГК 3). Имеется свыше 50 различных гиббереллинов, различающихся главным образом по числу и местоположению дополнительных групп, таких, как -OH. Для того чтобы описать эти различия, каждому атому углерода в основном скелете был присвоен номер, причем каждая группа получила номер того атома углерода, к которому она присоединена. Наконечниками стрелок обозначены связи, выступающие над плоскостью листа; короткие штрихи - это связи, находящиеся ниже плоскости листа, а сплошные линии - связи в плоскости листа

В 30-х годах японским физиологам и химикам удалось выделить из среды, на которой выращивали гриб Gibberella, несколько веществ, ингибирующих и стимулирующих рост. Предложенная ими в итоге структурная формула стимулятора роста гиббереллина была не совсем верна. Тем не менее эти ученые правильно определили общую природу вещества и получили кристаллы, при нанесении которых на испытуемые растения наблюдались типичные для болезни баканаэ симптомы очень сильного удлинения стебля. Эта информация была опубликована в Японии во многих статьях еще до 1939 г., но, к сожалению, вторая мировая война прервала начатую работу и отвлекла внимание большинства ученых на исследования для военных целей. Волнующая история открытия гиббереллина оставалась неизвестной на Западе примерно до 1950 г., когда несколько групп исследователей в Англии и США обнаружили старые статьи о гиббереллине и вновь приступили к решению этой проблемы.

К 1955 г. английские ученые подтвердили первоначальное наблюдение, сделанное в Японии, а также выделили вещество, которое они назвали гибберелловой кислотой (рис. 9.19). Она несколько отличается от материала, выделенного японцами. Вскоре много других соединений с такой же основной структурой было обнаружено как в грибах, так и в незараженных тканях высших растений. Стало ясно, что гиббереллины представляют собой целое семейство молекул, насчитывающее в настоящее время свыше 50 соединений. Все они обладают основным тетрациклическим гиббереллановым скелетом, но у каждого из них имеются различные модификации и химические группы (например, -OH) в разных частях молекулы. Гибберелловая кислота при нанесении на некоторые растения вызывает чрезмерное удлинение стебля, а в ряде случаев и уменьшение листовой поверхности. Самое яркое проявление ее действия - это, пожалуй, быстрая стимуляция удлинения цветоножки (стрелкование) и во многих случаях - стимуляция цветения длиннодневных растений (см. гл. 11 и 12; рис. 9.20). Гиббереллин способствует выбрасыванию стрелки, увеличивая как число клеточных делений в определенных зонах, так и растяжение клеток, образующихся путем таких делений (рис. 9.21). В тех случаях, когда наносятся лишь небольшие количества гиббереллина, выход в стрелку происходит, но зачатки цветков могут и не дифференцироваться. Более высокие дозы гиббереллина обычно вызывают не только стрелкование, но и цветение. Есть некоторые данные в пользу утверждения, что у длиннодневных растений индукция длинным днем стимулирует образование гиббереллина, что в свою очередь вызывает морфогенетические реакции. В других случаях активность гиббереллина в апексах растений снижается во время их выхода в стрелку, что свидетельствует о возможном использовании гиббереллина в этот период. Гиббереллин не способен вызывать цветение у короткодневных растений и фактически оказывает, по-видимому, противоположный эффект. Пока точно не известно, какие гормоны контролируют цветение у короткодневных растений или у тех длиннодневных растений, которые вытягиваются, но не зацветают в ответ на воздействие гибберелловой кислотой. Возможно, что в последнем случае в индукцию цветения вовлечена не гибберелловая кислота, а какой-то другой гиббереллин.

Однако не все растения реагируют на гиббереллин. Анализируя результаты многочисленных тестов, физиологи обнаружили корреляцию между исходным размером растения и степенью его реактивности в отношении гиббереллина. Если сравнивать, например, карликовый горох или карликовую кукурузу с их высокорослыми формами, то выясняется, что нанесение гиббереллина на карликовые растения вызывает их усиленный рост, тогда как при аналогичной обработке высокорослых форм эффект незначителен или его нет совсем (рис. 9.22). Поскольку во многих случаях различие между карликовостью и высокорослостью определяется только одним геном, предложена привлекательная гипотеза, согласно которой карликовость фактически обусловлена неспособностью растения продуцировать достаточное количество гиббереллина для удовлетворения своих основных потребностей. Следовательно, нанесение гиббереллина на некоторые генетические карлики дает высокорослые формы. Такие карликовые растения, ставшие высокими благодаря обработке гиббереллином, конечно, все равно будут иметь карликовые генотипы и при размножении будут давать карликовое потомство. Организмы, фенотипы которых изменены с помощью химической или физической обработки так, что они становятся похожими на организмы с другим генотипом, называются фенокопиями.

Установлено, что некоторые высокорослые растения действительно содержат больше общего количества гиббереллина, чем карликовые растения, хотя это и не всегда так. Однако при хроматографическом разделении гиббереллины высокорослых и карликовых растений часто обнаруживают некоторые качественные различия. В таких случаях карликовость может быть обусловлена наличием гиббереллинов, менее активных в стимуляции роста. Но ясно, что карликовость не всегда связана с аномалиями в гиббереллинах.

Гиббереллин может также индуцировать образование партенокарпических плодов, действуя самостоятельно или совместно с ауксином. Примером может служить яблоко. Многочисленные попытки добиться его партенокарпического развития с помощью одного ауксина не увенчались успехом. Сейчас опрыскивание растений смесью ауксина и гиббереллина приносит желаемые результаты. Повышение содержания природного гиббереллина в семенах яблока коррелирует также с периодом их максимального роста, что свидетельствует о возможной регуляции гиббереллином развития семени и стенки завязи. Последний аспект функционирования гиббереллина нашел применение в сельском хозяйстве при выращивании бескосточкового винограда.

Гиббереллины играют определенную роль, вероятно, не только в развитии семян, но также и в их прорастании. При этом они действуют двумя путями. Во-первых, они, по-видимому, способствуют выходу семян из состояния покоя, что можно легко продемонстрировать, нанеся гибберелловую кислоту на покоящиеся семена, которые после этого прорастают. Гиббереллин заменяет также свет или низкие температуры в тех случаях, когда для прерывания покоя семян требуются эти раздражители. В природе покой, вероятно, прерывается при повышении содержания естественного гиббереллина (рис. 9.23). Во-вторых, в семенах злаков гиббереллин является тем веществом, которое контролирует мобилизацию запасного питательного материала в эндосперме. Семена многих злаков, например ячменя, содержат запасной крахмал, способный быстро гидролизоваться в начале прорастания. После замачивания зерен ячменя, содержащих зародыши, начинается быстрый гидролиз крахмала. Если же. перед замачиванием удалить зародыши, то в семенах гидролиза крахмала не происходит. При нанесении гиббереллина на такие лишенные зародышей семена крахмал начинает гидролизоваться (рис. 9.24). Таким образом, в зародыше вскоре после набухания семян в норме, очевидно, образуются гиббереллины, активизирующие процесс гидролиза крахмала с помощью особого механизма, который будет рассмотрен более подробно в следующем разделе. Два описанных эффекта гиббереллина, проявляющихся при прорастании семян, полностью различаются между собой в том отношении, что прерывание покоя происходит в зародыше до мобилизации запасных питательных веществ. Последний процесс начинается в результате действия гиббереллина на алейроновый слой, окружающий эндосперм (рис. 9.25.)

По-видимому, имеются два пути контроля гиббереллином специфических физиологических процессов. Первый путь - это просто синтез гиббереллина растением и последующая инициация гиббереллин-зависимого процесса. Второй путь более сложен. Вспомните, что существуют около 50 гиббереллинов, различающихся по своей относительной активности в зависимости от того процесса, на который они оказывают влияние. Поскольку все гиббереллины имеют сходную молекулярную структуру, любой из них можно превратить в другой, лишь слегка модифицировав его молекулу, например присоединив к ней -OH- группу в одно или более положений из нескольких возможных. Таким образом, растение может управлять тем или иным внутренним процессом, превращая в ходе метаболизма неактивный гиббереллин в активный или наоборот.

Подобно каротиноидным пигментам, стероидам и каучуку, гиббереллины представляют собой изопреноидные соединения образующиеся из ацетил-СоА придыхательном метаболизме (см гл. 5). Метаболический путь биосинтеза гиббереллинов, выяс ненный с помощью меченных 14С соединений, отображает следующая схема:


Идентификация дитерпенов в качестве промежуточных соединений в биосинтезе гиббереллинов подтверждается еще и тем фактом, что ретардант роста АМО-1618, действующий как антагонист гиббереллинов, препятствует образованию дитерпена из его предшественника.

Как действует гиббереллин

При рассмотрении гиббереллина, так же как и аукоина, мы сталкиваемся с одной и той же проблемой: как можно объяснить, что очень малые количества данного вещества способны контролировать многочисленные и разнообразные морфогенетические реакции, включающие прорастание семян, деление и растяжение клеток, закладку цветков. Лишь один феномен был проанализирован подробно - индукция гидролиза крахмала в беззародышевых семенах ячменя.

Мы теперь знаем, что контроль расщепления крахмала гиббереллином сводится к регуляции образования и высвобождения ферментов. Нанесение гиббереллина на беззародышевые семена ячменя приводит к появлению и выделению амилазы (рис. 9.26), а также других ферментов. Амилаза вызывает гидролиз крахмала (по-латыни amylum), содержащегося в эндосперме зерна ячменя. Если удалить алейроновый слой, то можно показать, что образование фермента происходит именно в этой ткани. Следовательно, алейрон продуцирует и выделяет гидролитические ферменты, расщепляющие запасные питательные вещества в эндосперме. Именно эти алейроновые клетки, являющиеся "клетками-мишенями", и реагируют на гиббереллин. Данная система может служить примером органоспецифической регуляции роста, так как гиббереллин - своего рода ключ к запасным питательным веществам - образуется в зародыше, содержащем единственные в семени способные к росту ткани.

Каким образом гиббереллин вызывает проявление α-амилазной активности? Во-первых, очевидно, что фермент представляет собой не просто активированную форму предварительно синтезированного неактивного запасного белка, а образуется заново из составляющих его аминокислот. Это было показано путем добавления меченых аминокислот к зернам ячменя или алейроновым слоям, инкубированным с гиббереллином. В результате происходило включение радиоактивности в белок. Это включение предотвращалось ингибиторами синтеза белка, такими, как циклогексимид. На место действия гиббереллина в процессе синтеза белка указывает тот факт, что ингибиторы ДНК-зависимого синтеза РНК (например, актиномицин D) препятствуют также и синтезу амилазы. Отсюда можно заключить, что гиббереллин должен участвовать в образовании молекул мРНК на ДНК-матрице в качестве дерепресеора генов, кодирующих гидролитические ферменты; он как бы дает разрешение на выработку этих ферментов.

Попытки доказать существование такой специфической мРНК наталкиваются на трудности, связанные с очень малым количеством образующейся мРНК и отсутствием методов, позволяющих отличить ее от других мРНК. Последняя проблема была недавно решена благодаря обнаружению на одном конце молекул мРНК цепи адениновых остатков. Поскольку аденин соединяется водородными связями с уридином, это свойство позволяет отделять мРНК с помощью колонки со связанным полиуридином, к которому может присоединяться аденин. Информационная РНК сорбируется колонкой, тогда как другие РНК свободно проходят через нее. Затем, заменив раствор в колонке, можно элюировать и определить мРНК. Этот метод показал, что примерно через 4 ч после добавления гиббереллина меченые нуклеозиды включаются в мРНК с помощью ядер алейроновых клеток. Это происходит за несколько часов до появления α-амилазы. Кроме того, появление α-амилазы тормозится при добавлении на ранних этапах ингибитора кордицепина, который, как считается, специфически предотвращает завершение синтеза мРНК. Чем позже добавляется кордицепин, тем меньше его эффект. Если его добавить примерно через 12 ч после нанесения гиббереллина, то никакого ингибирующего влияния он уже не будет оказывать. Следовательно, индуцированный гиббереллином синтез мРНК для α-амилазы к этому времени должен был завершиться.

Специфическая природа вновь синтезированной мРНК была окончательно установлена с помощью комбинации изящных методов. После того как выделенную мРНК внесли в белок-синтезирующую систему in vitro, содержащую рибосомы, тРНК, необходимые ферменты и аминокислоты, путем сочетания иммунохимических и электрофоретических методов было показано, что образовавшийся белок идентичен настоящей α-амилазе!

Примерно в то же время, когда появляется мРНК, наблюдается и резкое увеличение числа полисом и шероховатого эндоплазматического ретикулума в алейроновых клетках. Такие изменения типичны для клеток, производящих секретируемые ферменты. Действительно, гиббереллин, по-видимому, способствует как секреции, так и синтезу ферментов. Было показано, что гиббереллин инициирует образование не только α-амилазы, но и других гидролаз, особенно протеазы и рибонуклеазы. Таким образом, один гормон, очевидно, вызывает ряд событий, приводящих к быстрому преобразованию всех запасных питательных веществ семени в вещества, доступные для молодого растения. Гиббереллин способствует также выделению всех этих ферментов из алейроновых клеток в эндосперм. Синтез и высвобождение α-амилазы начинается примерно через 9 ч после добавления гиббереллина (рис. 9.26). Рибонуклеаза синтезируется одновременно с α-амилазой, но до ее выделения из клеток должно пройти более 24 ч с момента добавления гиббереллина. Ферменты расщепляют запасные питательные вещества на растворимые продукты, которые затем транспортируют к растущим апексам растения и используются в качестве источников энергии и материалов, необходимых для образования новых клеток.

Если гиббереллин может дерепрессировать определенные гены в клетках алейронового слоя, не удивительно, что он может также оказывать влияние на деление и дифференциацию клеток в других частях растения путем "включения" других генов. Какие гены при этом включаются, почти наверняка зависит от природы клеток. Сделано не много работ, посвященных роли гиббереллина в инициации или контроле растяжения клеток. У совсем взрослых растений овса гиббереллин отвечает за значительное удлинение междоузлий стебля до цветения. Было установлено, что в отсутствие ауксина такое удлинение полностью обусловлено растяжением клеток, хотя в природных условиях при наличии определенного количества ауксина в узле происходит также и деление клеток. Первоначальные результаты показывают, что гиббереллин индуцирует растяжение клеток благодаря подкислению клеточных стенок примерно таким же образом, как было описано ранее для ауксина. Однако чувствительные к гиббереллину клетки не реагируют на ауксин. Различия между клетками этих двух типов объясняются, вероятно, наличием у них разных рецепторов гормонов.

Гиббереллины - группа фитогормонов. Стимулируют рост стебля, способствуют формированию плодов и семян, а также прорастанию семян, клубней и луковиц. По химической природе -- дитерпеновые тетрациклические кислоты. Известно более ста гиббереллинов, хотя лишь немногие из них имеют собственную биологическую активность (ГА1, ГА3, ГА4, ГА7 и некоторые другие). Гиббереллины обнаружены японскими учеными при выяснении причины болезни риса, вызванной микроскопическим грибком Gibberella fujikuroi.

Гиббереллины образуются из мевалоновой кислоты и затем геранилгераниола (см. Гераниол) через ряд стадий, которые проходят в разных частях клетки и даже в разных органах. Главными местами отдельных стадий биосинтеза являются меристематические ткани (верхушка побега и молодые листья, кончик корня, проводящие ткани, формирующиеся и прорастающие семена), а также зрелые листья, где образование гиббереллинов регулируется фотопериодом (длиной дня, см. Фотопериодизм). Обычно свет активирует образование гиббереллинов и усиливает чувствительность к ним тканей. Инактивация гиббереллинов происходит путем их гидроксилирования в 2-положении, либо конъюгации с углеводами, карбоновыми кислотами и спиртами. Гиббереллины и их предшественники транспортируются на дальние расстояния пассивно с ксилемным и флоэмным током.

Гиббереллины обладают многообразным физиологическим действием, хотя получены карликовые мутанты растений, не образующие активные гиббереллины или не чувствительные к ним. Гиббереллины стимулируют линейный рост стебля, активируя как деление клеток меристематических зон, так и растяжение клеток. Они индуцируют образование цветоносов и цветение у многих розеточных длиннодневных растений. У клубненосных растений гиббереллины стимулируют рост столонов, но препятствуют образованию клубней. Важную роль гиббереллины играют при формировании плодов и семян; помимо этого, они активируют прорастание семян, клубней и луковиц. У многих однодомных и двудомных растений гиббереллины способствуют формированию мужских цветков. Гиббереллины задерживают старение листьев у ряда растений (одуванчик, щавель) и даже вызывают их «омоложение» (цитрусовые, плющ). На биохимическом уровне установлена способность гиббереллинов индуцировать экспрессию генов -амилазы и других гидролитических ферментов в алейроновом слое эндосперма при прорастании семян злаков.

Гиббереллины широко используют в практических целях, обрабатывая растения экзогенными гормонами либо управляя метаболизмом эндогенных гиббереллинов. Действие многих ретардантов -- веществ, тормозящих рост растений в длину и предотвращающих таким образом полегание зерновых -- хлорхолинхлорид, фосфон D, паклобутразол и др., основано на блокировании тех или иных стадий биосинтеза гиббереллинов в растениях. Обработка гиббереллинами способствует получению партенокарпических (бессемянных) плодов и стимулирует их рост у винограда, цитрусовых и груши. У цитрусовых, кроме того, обработка гиббереллинами предотвращает старение кожуры и удлиняет период плодоношения. Обработка гиббереллином снимает потребность в стратификации у тех семян, которые в ней нуждаются, и дает возможность получения второго урожая при летней посадке (в южных районах) семян и клубней. Гиббереллины применяют также для повышения выхода волокна у льна и конопли, при производстве солода, для увеличения вегетативной массы кормовых культур и других целей.

Гиббереллины — класс веществ, подобных органических кислот. Относятся к гормонам растений (фитогормоны). Стимулируют рост и развитие растений, способствуют прорастанию семян. По химической природе — дитерпены полициклические кислоты, которые относятся к карбоновых кислот. Основной структурой гиббереллины считают гиббереллин ГК9; другие гиббереллина рассматриваются как его производные. Известно более 100 гиббереллинов. Они указываются под шифром ГК. Например, гибберелловая кислота — ГК3, что является активной.

Гиббереллины было открыто группой японских ученых под руководством Еиши Куросавы, которая изучала болезнь риса «баканае», при которой интенсивно удлинялись стебли и листья растения. Болезнь спричинювалася грибом Gibberella fujikuroi. С экстракта гриба было выделено активное вещество, которое назвали гиббереллином.

Описание

По химической природе — это дитерпеновые тетрацикличные кислоты. Известно более 100 гибералинив, хотя лишь немногие из них имеют собственную биологическую активность (ГА1, га3, ГА4, ГА7 и некоторые другие). Гиббереллины образуются из мевалоновой кислоты, после чего проходят ряд стадий преобразования в различных частях клетки и в разных органах. Главными местами отдельных стадий биосинтеза является меристематическая ткани (верхушка побега, молодые листья, кончик корня, проводящие ткани), а также зрелое листьев, образования гиббереллины регулируется фотопериодом (длиной дня). Обычно свет активирует образование гиббереллинов и усиливает чувствительность к ним тканей. Гиббереллины и их предшественники транспортируются на дальние расстояния пассивно с ксилемним и флоемним током.

Гиббереллины обладают разнообразной физиологическому действию. Они стимулируют линейный рост стебля, активируя как деление клеток меристематическая зон, так и растяжение клеток. Они индуцируют образование цветоносов и цветения во многих розеточных длиннодневных растений. Важную роль гиббереллинами играют при формировании плодов и семян; кроме этого, они активируют прорастания семян, клубней и луковиц. Во многих однодомных и двудомных растений гиббереллины способствуют формированию мужских цветков. Гиббереллины задерживают старение листьев у ряда растений. На биохимическом уровне установлена ​​способность гиббереллины индуцировать экспрессию генов — амилазы и других ферментов в алейроновому слое эндосперма при прорастании семян злаков. Гиббереллины широко используют в практических целях, обрабатывая растения экзогенными гормонами или управляя метаболизмом эндогенных гиббереллинов. Действие многих ретарданты — веществ, замедляющих рост растений в длину, основано на блокировании тех или иных стадий биосинтеза гиббереллинов в растениях. Обработка Гиббереллины способствует получению партенокарпических (бессемянных) плодов и стимулирует их рост в винограда, цитрусовых и груши. Гиббереллины применяют также для повышения выхода волокна у льна и конопли, при производстве солода, для увеличения вегетативной массы кормовых культур и других целей

История открытия.

В Японии распространено заболевание риса, которое местные жители называют "баканоэ"-"бешеный рис", "дурные проростки". Рассада пораженных болезнью растений опережает в росте здоровый рис, но колосья вырастают уродливыми и зерна не бывает. В 1926 году японский ботаник Куросава выделил и описал возбудителя болезни - гриб Gibberella fujikuroi (сейчас этот гриб перенесли в род Fusarium ). Вскоре выяснилось, что многие симптомы "бешеного риса" можно вызвать культуральной жидкостью, в которой рос гриб. Это значит, что гриб выделяет некоторое растворимое в воде вещество, усиливающее рост риса. По родовому названию гриба вещество было названо гиббереллином.

В 1930 году японские химики выделили гиббереллин в кристаллическом виде и предложили структурную формулу. Но эту работу прервала война, и до 1950 года о гиббереллине почти никто не знал. Исследования возобновили несколько групп исследователей в Англии и США, и к 1955 году структура первого из гиббереллинов была окончательно установлена.

Обнаружилось, что растения и сами способны вырабатывать похожие вещества, за которыми сохранилось название гиббереллинов. Это - самый обширный класс растительных гормонов, на сегодня их известно более 100. Поскольку большинство из гиббереллинов - кислоты, их принято обозначать как ГК (гибберелловая кислота) с соответствующим индексом. Например: ГК 24 , ГК 53 и т.д. Наиболее часто в экспериментах используют ГК 3 .

Биосинтез, клеточные эффекты и мутанты гиббереллинов .

В растениях биосинтез гиббереллинов начинается в пластидном компартменте. Из дезоксиксилозо-5-фосфата образуется изопентенилпирофосфат и далее (путем конденсации) геранилпирофосфат и геранилгераниолпирофосфат. Ключевым моментом биосинтеза гиббереллинов является циклизация последнего продукта с образованием энт-копалилдифосфата и энт-каурена, который считается предшесственником всех гиббереллинов.

Энт-каурен покидает пластиду и дальнейший синтез идет в цитоплазме. Последовательными реакциями окисления образуются энт-кауреновая кислота, энт-гидроксикауреновая кислота ГК 12 -альдегид и ГК 12 -кислота. После этого биосинтез гиббереллинов разветвляется на параллельные ветви, которые путем модификации радикалов и замыканием дополнительных циклов внутри молекул приводят ко всему разнообразию гиббереллинов. Физиологически активными являются далеко не все гиббереллины. Физиологической активностью обладают в частности ГК 1 , ГК 3 , ГК 4 , ГК 7 и др., причем физиологическая активность зависит от видовой принадлежности растения. Одно и то же соединение может быть активно в одном виде растений, но не проявлять физиологической активности в другом.



Биосинтез гиббереллинов контролируется многими факторами. Например, начальные стадии биосинтеза находятся под контролем развития (т.е. включаются на определенных стадиях развития и дифференцировки). Переход от ГК 12 или ГК 53 к ГК 9 или ГК 20 зависит от длины дня и от уровня ауксинов. В этой точке метаболизма регулируется переход к цветению под действием гиббереллинов.

На переход от ГК 9/20 к активным ГК 4/1 влияют как ауксины, так и красный свет. Эта стадия биосинтеза находится под контролем при прорастании семян.

Рецепция гиббереллинового сигнала приводит к замедлению указанных выше переходов, и одновременно усиливается превращение активных ГК 4/1 в неактивные ГК 34/8 .

Как и большинство растительных гормонов, гиббереллины могут конъюгировать с сахарами, образуя неактивные гликозиды (запасные формы гиббереллинов). Кроме того, в растениях существуют специфические оксидазы, которые необратимо переводят гиббереллины в неактивные соединения.

О путях передачи гиббереллинового сигнала известно достаточно мало. Рецептор(ы), связывающиеся с гиббереллинами, пока еще не охарактеризованы. Показано, что в трансдукции сигнала участвует цГМФ. Предполагают участие в трансдукции гиббереллинового сигнала ионов кальция и кальмодулина.

На клеточном уровне гиббереллины активируют растяжение, деление клеток, стимулируя их приход из фазы G1 в S.

На субклеточном уровне гиббереллины активируют траспорт Са2+ через плазматичесую мембрану и мембрану ЭПС, понижают рН внутри клетки, влияют на ориентацию микротрубочек, изменяют клеточный метаболизм фосфатидилхолина, стимулируют растяжение клеточной стенки, влияют на экспрессию генов.

Мутанты по чувствительности и синтезу гиббереллинов подразделют на 1) карлики и полукарлики (dwarf semidwarf), 2) растения с сильно удлиненными и утонченными побегами «slender». Был выделен мутант арабидопсис spy (spindly ) с конститутивным ответом на гиббереллин: растения сильно вытягивались в длину, семена преждевременно прорастали и т.п. Последовательность гена SPY позволяет сделать вывод, что белок работает как N-ацетилглюкозаминтрансфераза. По-видимому, гликозилирование является важным событием в репрессии ответа на гиббереллин. При повреждении белка репрессия снимается, и можно наблюдать постоянный ответ на гиббереллин, который не зависит от добавления гормона.

Еще один белок гиббереллинового ответа был выделен благодаря мутации gai (GA-insensitive ). Он оказался транскрипционным регулятором. При повреждении генного локуса GAI растения становились нечувствительными к гиббереллинам.

Гиббереллины способны вызывать синтез специфических транскрипционных факторов, которые обозначены как GAMyb. Известно, что Myb-белки регулируют различные аспекты морфогенеза у растений: антоциановый биосинтез, дифференцировку трихом листьев, ответ та стресс и др. Эти регуляторы узнают последовательности в промоторных участках многих генов (например, у гена a-амилазы ячменя). Одними из основных генов- мишений ГК являются гены синтеза тубулинов, антоцианов и амилаз.

Основные физиологические эффекты гиббереллинов .

Образно гиббереллины можно назвать "гормонами благополучия зеленого листа".

1. Гиббереллины вырабатываются в основном в фотосинтезирующих листьях (однако, могут синтезироваться и в корнях). Действуют гиббереллины прежде всего на интеркалярные меристемы, расположенные в непосредственной близости от узлов, к которым прикреплены листья.

Наиболее яркий эффект наблюдается при обработке гиббереллинами интеркалярных меристем злаков: растения сильно вытягиваются, механическая прочность соломины понижается и стебель полегает. Кроме того, при действии гиббереллинов у риса и кукурузы не может образоваться фертильная пыльца. Именно поэтому при болезни баканоэ рис практически не давал урожая.

Если пронаблюдать за ростом ветки яблони, липы или других деревьев, выяснится, что апикальная меристема активна только во второй половине лета, когда закладываются почки с листьями и цветками на следующий сезон. Часто апикальная меристема останавливает рост в еще закрытой почке. Рост ветки начинается весной: почка набухает и из нее образуется длинный побег. Весенний рост целиком происходит за счет интеркалярных меристем.

Почки растений не одинаковы. Так, почки каштана, тополя, яблони, березы покрыты почечными чешуями (или катафиллами). Эти чешуи - видоизмененные листья, которые не занимаются фотосинтезом. Междоузлия между почечными чешуями остаются короткими, и в основании побега остается так называемое почечное кольцо (близко расположенные рубцы от почечных чешуй). Затем начинаются фотосинтезирующие листья, и чем больше площадь листа, тем длиннее междоузлие под ним. Это означает, что крупный зеленый лист производит гиббереллина больше, чем меньший по площади, и подает более мощный сигнал в интеркалярную меристему. Клетки активнее делятся и растягиваются там, где больше гиббереллина, и междоузлие под крупным листом оказывается длиннее. Нефотосинтезирующие почечные чешуи практически не вырабатывают гиббереллина. Поэтому их незачем разделять в пространстве и нет необходимости создавать листовую мозаику. Интеркалярная меристема не работает, образуется почечное кольцо из сближенных рубцов от почечных чешуй.

У крушины, дёрена, облепихи почечных колец не бывает. Их почки прикрыты листьями, которые весной становятся хорошо развитыми зелеными листьями. Они передают гиббереллиновый сигнал вставочным меристемам, за счет растяжения междоузлий возникает листовая мозаика.

Несколько сложнее физиологический ответ на гиббереллин у розеточных растений. В начале сезона они образуют прикорневую розетку листьев. Несмотря на крупные размеры листьев, междоузлия между ними не увеличиваются. Гиббереллиновый сигнал направляется к верхушке побега, и когда он превышает некоторый порог, эта меристема начинает образование соцветий. В соцветиях розеточных растений листья уступают в размерах прикорневым, но междоузлия на цветущем побеге гораздо длиннее. Это обусловлено гибберелиновыми сигналами, поступающими в интеркалярные меристемы из ниже лежащих листьев розетки.

Биосинтез гиббереллинов можно подавить с помощью некоторых ретардантов (один из таких агентов - паклобутразол). Паклобутразол широко используется при выращивании растений. Слишком большая высота иногда бывает нежелательной. Например, крупные цветки на коротких цветоножках (т.е. в плотных соцветиях) смотрятся более эффектно, чем на длинных. Если при выращивании высокорослых сортов вовремя провести обработку ретардантом, то получатся "искусственные карлики". Так, из Голландии часто поставляют "карликовые" хризантемы, каланхоэ, горечавки и др. растения. Они пользуются большим спросом, однако после продажи ретарданты перестают действовать и рост растений нормализуется.

2. Гиббереллины и прорастание зерна. Один из самых ранних эффектов, вызываемых гиббереллинами - это мобилизация запасных питательных веществ при прорастании семян. Лучше всего этот процесс изучен у злаков (ячменя, ржи, пшеницы), поскольку имеет важное практическое значение для производителей пива.

Зерновка злаков состоит из зародыша, эндосперма и семенной кожуры. Запас питательных веществ сосредоточен в эндосперме в виде крахмала. К моменту созревания зерна крахмалистый слой уже не содержит живых клеток. На периферии эндосперма остается лишь тонкий слой живых клеток, богатых запасными белками - алейроновый слой. Зародыш злаков контактирует с эндоспермом щитком. При прорастании щиток выделяет гиббереллин. Он означает, что зародыш "проснулся", ему нужны питательные вещества. Гиббереллины диффундируют через зону с крахмальными зернами к алейроновому слою эндосперма. В живых клетках алейронового слоя начинается синтез матричных РНК для ферментов, разрушающих крахмал - амилаз. (Промоторы генов амилаз содержат консенсус, который узнают специфические транскрипционные факторы GAMyb, индуцированные гиббереллинами).

Белковые гранул (алейрон) растворяются: запасной белок разрушается до отдельных аминокислот. Аминокислоты служат строительным материалом для синтеза амилаз. Эти ферменты поступают из алейронового слоя к крахмальным зернам. Крахмал разрушается до мальтозы и глюкозы, а эти сахара впитывает щиток и передает остальным тканям зародыша. Вот таким длинным путем осуществляется аттрагирующий эффект гиббереллинов.

Процесс разрушения крахмала в семенах злаков очень важен для пивоварения. Чтобы получить пиво, семена ячменя проращивают, выжидают, когда крахмал разрушится, а затем вываривают проростки в кипящей воде. Экстракт упаривают и получают темную сладкую массу - солод. Качество солода зависит от жизнеспособности зародышей и от того, насколько хорошо они вырабатывают гиббереллины. Чем ниже всхожесть семян, тем хуже солод.

Теперь благодаря открытию гиббереллинов можно получать качественный солод из плохо прорастающих семян - достаточно их обработать слабым раствором гиббереллинов, как начнется разрушение крахмала. Причем даже наличие зародыша оказывается не обязательным: обломки семян также пригодны для производства солода. Сильно ускорился и сам процесс получения солода. Если в старину на это уходило более недели, то сейчас достаточно двух-трех дней.

3. Еще один пример аттрагирующего действия гиббереллинов - стимуляция развития бессемянных плодов. Особенно это важно при выращивании бескосточковых сортов винограда. Если применить гиббереллин, ягоды получаются более крупными и урожай возрастает.

Гиббереллины стимулируют прорастание не только семян злаков, но и других растений. У подсолнечника и тыквы эти гормоны запускают разрушение запасных жиров и их окисление до сахаров, у бобовых мобилизуют гранулы запасных белков и т.д. Именно поэтому рекомендуют обрабатывать гиббереллином семена, клубни и луковицы перед посадкой: увеличивается % прорастания, рост становится более активным.

4. Гиббереллин и проявление пола у растений.

С помощью гиббереллина можно вызвать изменение пола у растений. В 1970-х годах под руководством М.Х.Чайлахяна были проведены исследования на огурцах и конопле. Огурцы образуют как мужские, так и женские цветки на одном растении, а конопля относится к типично двудомным растениям (мужские и женские цветки на разных экземплярах). Обработка гиббереллинами вызывала увеличение % мужских растений у конопли и усиливала закладку мужских цветков на огурцах. Гормоном-антагонистом в этих экспериментах выступал цитокинин, который вызывал образование женских цветков.

Однако, опыты, проведенные в США на кукурузе показали обратный эффект: при обработке ГК 3 за 8-9 дней до мейоза в мужской метелке образовались женские цветки и семена, а обработка за 3 дня до мейоза приводила к мужской стерильности у кукурузы. Мужскую стерильность можно вызывать гиббереллином также у риса (при болезни "баканоэ").

Иногда проявление пола зависит не только от вида, но и от генетической линии, к которой принадлежит растение. Например, обработка гиббереллинами томатов дикого типа вызывала образование избыточного числа гнезд в завязях (стимулировала женское развитие). У мутантов томата stamenless , лишенных тычинок, гиббереллин вызывал нормализацию андроцея, т.е. стимулировал развитие мужской сферы в цветке.

Несомненно, уровень гиббереллинов влияет на проявление пола у растений. Однако, результат зависит от вида, линии, и внешних обстоятельств, при которых проводится обработка.

5. Гиббереллин и цветение растений.

Один из ярких эффектов гиббереллинов - стимуляция цветения ряда растений. Как правило, уровень эндогенных гиббереллинов повышается при увеличении длины дня. У многих растений умеренных широт цветение контролируется фотопериодом. Виды, цветущие на длинном дне, можно заставить цвести с помошью гиббереллинов. В опытах М.Х.Чайлахяна к гиббереллину оказались чувствительными рудбекия, каланхоэ, морковь. Однако, другие виды (например, озимая пшеница) не цвели после обработки гиббереллинами, хотя для всех перечисленных видов важным индуктором цветения является длинный день. Таким образом, участие гиббереллина в регуляции цветения очевидно, хотя результат во многом зависит от частной физиологии того или иного растения.

6. Гибберрелины усиливают пигментацию венчика за счет активации работы халкон- синтетазы и тем самым ускоряя биосинтез антоцианов.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: