Меры по снижению шума. Мануйлов Р.Е. Пневматические исполнительные устройства Уровень шума при истечении воздуха из отверстия

Инженерные расчеты пневмосистем сводятся к определению скоростей и расходов воздуха при наполнении и опорожнении резервуаров (рабочих камер двигателей), а также с его течением по трубопроводам через местные сопротивления. Вследствие сжимаемости воздуха эти расчеты значительно сложнее, чем расчеты гидравлических систем, и в полной мере выполняются только для особо ответственных случаев. Полное описание процессов течения воздуха можно найти в специальных курсах газодинамики.

Основные закономерности течения воздуха (газа) такие же, как и для жидкостей, т.е. имеют место ламинарный и турбулентный режимы течения, установившийся и неустановившийся характер течения, равномерное и неравномерное течение из-за переменного сечения трубопровода и все остальные кинематические и динамические характеристики потоков. Вследствие низкой вязкости воздуха и относительно больших скоростей режим течения в большинстве случаев турбулентный.

Для промышленных пневмоприводов достаточно знать закономерности установившегося характера течения воздуха. В зависимости от интенсивности теплообмена с окружающей средой расчеты параметров воздуха выполняются с учетом вида термодинамического процесса, который может быть от изотермического (с полным теплообменом и выполнением условия Т = const) до адиабатического (без теплообмена).

При больших скоростях исполнительных механизмов и течении газа через сопротивления процесс сжатия считается адиабатическим с показателем адиабаты k = 1,4. В практических расчетах показатель адиабаты заменяют на показатель политропы (обычно принимают n = 1,3…1,35), что позволяет учесть потери, обусловленные трением воздуха, и возможный теплообмен.

В реальных условиях неизбежно происходит некоторый теплообмен между воздухом и деталями системы и имеет место так называемое политропное изменение состояния воздуха. Весь диапазон реальных процессов описывается уравнениями этого состояния

pV n = const

где n - показатель политропы, изменяющийся в пределах от n = 1 (изотермический процесс) до n = 1,4 (адиабатический процесс).

В основу расчетов течения воздуха положено известное уравнение Бернулли движения идеального газа

Слагаемые уравнения выражаются в единицах давления, поэтому их часто называют "давлениями":
z - весовое давление;
p - статическое давление;
- скоростное или динамическое давление.

На практике часто весовым давлением пренебрегают и уравнение Бернулли принимает следующий вид

Сумму статического и динамического давлений называют полным давлением P 0 . Таким образом, получим

При расчете газовых систем необходимо иметь в виду два принципиальных отличия от расчета гидросистем.

Первое отличие заключается в том, что определяется не объемный расход воздуха, а массовый. Это позволяет унифицировать и сравнивать параметры различных элементов пневмосистем по стандартному воздуху (ρ = 1,25 кг/ м3, υ = 14,9 м2/с при p = 101,3 кПа и t = 20°C). В этом случае уравнение расходов записывается в виде

Q м1 = Q м2 или υ 1 V 1 S 1 = υ 2 V 2 S 2

Второе отличие заключается в том, что при сверхзвуковых скоростях течения воздуха изменяется характер зависимости расхода от перепада давлений на сопротивлении. В связи с этим существуют понятия подкритического и надкритического режимов течения воздуха. Смысл этих терминов поясняется ниже.

Рассмотри истечение газа из резервуара через небольшое отверстие при поддержании в резервуаре постоянного давления (рис.11.1). Будем считать, что размеры резервуара настолько велики по сравнению с размерами выходного отверстия, что можно полностью пренебрегать скоростью движения газа внутри резервуара, и, следовательно, давление, температура и плотность газа внутри резервуара будут иметь значения p 0 , ρ 0 и T 0 .

Рис.11.1. Истечение газа из отверстия в тонкой стенке

Скорость истечения газа можно определять по формуле для истечения несжимаемой жидкости, т.е.

Массовый расход газа, вытекающего через отверстие, определяем по формуле

где ω 0 - площадь сечения отверстия.

Отношение p/p 0 называется степенью расширения газа. Анализ формулы (11.7) показывает, что выражение, стоящее под корнем в квадратных скобках, обращается в ноль при p/p 0 = 1 и p/ p 0 = 0. Это означает, что при некотором значении отношения давлений массовый расход достигает максимума Q max . График зависимости массового расхода газа от отношения давлений p/p 0 показан на рис.11.2.

Рис.11.2. Зависимость массового расхода газа от отношения давлений

Отношение давлений p/p 0 , при котором массовый расход достигает максимального значения, называется критическим. Можно показать, что критическое отношение давлений равно

Как видно из графика, показанного на рис.11.2, при уменьшении p/p 0 по сравнению с критическим расход должен уменьшаться (пунктирная линия) и при p/p 0 = 0 значение расхода должно быть равно нулю (Q m = 0). Однако в действительности это не происходит.

В действительности при заданных параметрах p 0 , ρ 0 и T 0 расход и скорость истечения будут расти с уменьшением давления вне резервуара p до тех пор, пока это давление меньше критического. При достижении давлением p критического значения расход становится максимальным, а скорость истечения достигает критического значения, равного местной скорости звука. Критическая скорость определяется известной формулой

После того, как на выходе из отверстия скорость достигла скорости звука, дальнейшее уменьшение противодавления p не может привести к увеличению скорости истечения, так как, согласно теории распространения малых возмущений, внутренний объем резервуара станет недоступен для внешних возмущений: он будет "заперт" потоком со звуковой скоростью. Все внешние малые возмущения не могут проникнуть в резервуар, так как им будет препятствовать поток, имеющий ту же скорость, что и скорость распространения возмущений. При этом расход не будет меняться, оставаясь максимальным, а кривая расхода примет вид горизонтальной линии.

Таким образом, существует две зоны (области) течения:

подкритический режим , при котором

надкритический режим , при котором

В надкритической зоне имеет место максимальная скорость и расход, соответствующие критическому расширению газа. Исходя из этого при определении расходов воздуха предварительно определяют по перепаду давления режим истечения (зону), а затем расход. Потери на трение воздуха учитывают коэффициентом расхода μ, который с достаточной точностью можно вычислить по формулам для несжимаемой жидкости (μ = 0,1...0,6).

Окончательно скорость и максимальный массовый расход в подкритической зоне, с учетом сжатия струи определятся по формулам

Истечение в вязкостном потоке. Рассмотрим истечение через малое отверстие площадью F из области l с высоким (атмосферным) давлением р1 в область 2 низкого давления р2. При уменьшении рг скорость истечения и, следовательно, количество протекающего газа непрерывно увеличивается до тех пор, пока скорость истечения через отверстие не становится равной скорости звука. . Дальнейшее уменьшение р2 не приводит к увеличению скорости и количества протекающего газа; они остаются постоянными.

Поток газа, проходящий через сечение привыражается

формулой


(25)

где г = - <: 1; F- площадь отверстия; k- постоянная Больцмана; Pi

mr - масса молекулы; T1- абсолютная температура в области /. Для воздуха при 200 Cv = 1,403; T1 = 293° К и


(26)

где Q в мм рт. ст. - л/с; р - в мм рт. ст.; F - в см2. Максимальное значение Q при

для воздуха rKp = 0,52.

Сопротивление и пропускную способность отверстия для воздуха при 20° С подсчитаем по формулам (18) и (19). При 1 > г > 0,52

При 0,52 ;> г

При 0,1 > г


тогда поток газа

где п - число молекул в единице объема при давлении рх. Из формулы (3) для идеального газа



Поток через отверстие площадью F из области с давлением рх в область с давлением р2

Но так как характер течения определяется только вероятностью попадания молекулы в отверстие из любой точки камеры, то и из области с давле-

где L - в л/с; F - в см2; г - - (P1 > рг).

Таким образом, пропускная способность отверстия в вязкостном режиме является функцией г отношения давлений, пока это отношение не станет меньше 0,1.

Значения пропускной способности на единицу площади отверстия для воздуха при разных значениях г:

Приведенные формулы и значения величин действительны для отверстий, которые весьма малы по сравнению с размерами камер. Края отверстия должны быть как можно более тонкими, в противном случае линии течения значительно изменяются и уравнения дают ошибочные результаты.

Истечение в молекулярном потоке. При рассмотрении истечения в молекулярном потоке из камеры с давлением рх в камеру сдавленней рг прежде всего следует учесть, что длина свободного пробега молекул больше характерного размера камеры. Отсюда следует, что градиент давления вблизи отверстия и линии течения не образуются. Молекула газа может попаеть в отверстие непосредственно из любой точки камеры. Количество протекших через отверстие молекул будет, таким образом, определяться только их тепловым движением и, согласно законам молекулярно-кинетической теории, число молекул, прошедших через единицу сечения в единицу времени, может быть подсчитано по уравнению (12)

Истечение жидкости через отверстия и насадки

Истечение жидкости через отверстие. Основные определения.

Рассмотрим истечение через круглое отверстие в боковой стенке сосуда, в котором поддерживается постоянный напор
.

Тонкая стенка – толщина стенки не влияет на форму струи, струя качается только внутренней острой кромки.

Ориентировочно
.

Малое отверстие – геометрический напор в пределах отверстия можно считать постоянным (а значит и скорости в пределах сечения одинаковы). Условие – высота отверстия не превышает
. Важен не абсолютный размер отверстия, а соизмеримость его высоты и напора. Так узкая вертикальная щель – большое отверстие, а отверстие в днище сосуда – малое (напор во всех его точках одинаков).

Кроме того, необходимо, чтобы скорость подхода жидкости к отверстию была пренебрежимо мала (площадь сечения бака много больше площади отверстия).

Если на поверхность жидкости в баке действует избыточное давление , то при изучении истечения следует принимать во внимание действительный напор на уровне оси отверстия
. Предполагается, что истечение происходит в атмосферу и давление в сечении
равно атмосферному. Площадь отверстия
.

Сжатое сечение струи – ближайшее к отверстию сечение струи, в котором скорости параллельны. Сжатое сечение находится на расстоянии
от внутренней поверхности стенки резервуара. На рисунке обозначено
, площадь поперечного сечения струи в этом сечении обозначается .

Коэффициент сжатия струи – отношение сжатого живого сечения к площади отверстия
.

Сжатие струи может быть полным или неполным по периметру отверстия.

Неполное сжатие – стенки или дно сосуда совпадают с краем отверстия и по части периметра сжатия нет. Коэффициент сжатия больше, расход больше.

Полное сжатие может быть совершенным и несовершенным.

Круг практически не меняется, лишь незначительно сжимается в вертикальном направлении (эллипс).

Инверсия объясняется совместным действием сил инерции и поверхностного натяжения.

Истечение из малого незатопленного отверстия в тонкой стенке при постоянном напоре

– избыточное давление над поверхностью воды в баке.

Запишем уравнение Бернулли для потока вязкой жидкости для сечений
(на свободной поверхности) и
(сжатого сечения) относительно плоскости сравнения
, проходящей через центр тяжести сжатого сечения. Очевидно
. Давление в сжатом сечении равно атмосферному, значит избыточное давление
. Скорость жидкости в сечении
полагаем пренебрежимо малой. Потери напора выразим через коэффициент сопротивления

.

Полагаем скорости одинаковыми по сжатому сечению, т.е.
.

Введем понятие действующего напора
. Это означает замену избыточного давления над поверхностью жидкости дополнительным столбом жидкости, производящим такое же давление. Этот прием часто используется в гидравлике для упрощения вычислений.

=>

Обозначим коэффициент скорости
, тогда
.

При истечении из отверстия идеальной жидкости (течение без потерь), ее скорость соответствует полному переходу потенциальной энергии в кинетическую:

– формула Торричелли (1641 г.)

Действительно, умножив на массу, получим
.

Коэффициент скорости
.

Физический смысл коэффициента скорости – это отношение действительной скорости истечения к теоретически возможной при отсутствии потерь энергии.

Обозначим площадь сжатого сечения . Коэффициент сжатия струи
, где
– площадь отверстия. Очевидно
.

Расход жидкости через отверстие

Где
– коэффициент расхода.

Очевидно

Физический смысл коэффициента расхода – отношение действительного расхода через отверстие к теоретически возможному при отсутствии сжатия струи и потерь энергии.

В результате опытов установлено


Значения коэффициентов сжатия , скорости , расхода и сопротивления зависят в первую очередь от формы и размеров отверстия, условий подхода к нему жидкости а также от числа Рейнольдса, которое обычно рассчитывается по теоретической скорости
.

С увеличением числа Re, т.е. уменьшением влияния сил вязкости, коэффициент возрастает в связи с уменьшением ;

коэффициент уменьшается вследствие уменьшения торможения жидкости у кромки отверстия и увеличения радиусов кривизны поверхности струи на ее участке от кромки до цилиндрической части.

Опыты показывают, что при
влияние сил вязкого трения на коэффициенты истечения практически отсутствует (квадратичная зона сопротивления)
.

Истечение через затопленное отверстие (под уровень)

При истечении через отверстие под уровень жидкости отверстие называют затопленным. Рассмотрим истечение через затопленное отверстие при условии, что положение свободных поверхностей жидкости по обе стороны от отверстия не изменяется во времени, давление на свободной поверхности до отверстия и за ним атмосферные.

,
,


Действующий напор

Перепад давлений на отверстии

Истечение жидкости через малое отверстие при переменном напоре

Рассмотрим истечение жидкости из призматического резервуара (с постоянным поперечным сечением
) через малое отверстие в днище площадью
.

Необходимо найти время, за которое напор изменится от
до
.

При истечении имеет место квазиустановившееся движение .

При расчете параметров квазиустановившегося потока принято время истечения разбивать на большое число малых интервалов
и в пределах каждого интервала считать движение установившимся.

За малое время
можно считать напор и расход постоянными.

.

За рассматриваемый промежуток времени
из бака вытечет объем
.

В то же время при понижении уровня в баке на величину
из него вытечет объем
(
отрицательно, т.к. уменьшается). Приравняем и преобразуем

=>

Проинтегрируем это уравнение в пределах от
до
(для смены знака меняем пределы интегрирования)

Поставленная задача решена.

Полагая
получим время полного опорожнения сосуда
.

Проанализируем полученное выражение, для чего числитель и знаменатель умножим на
:

. Заметим, что объем сосуда
, расход при постоянном напоре, равном
, был ранее получен
. Таким образом:
.

Вывод: при постоянном напоре
заключенный в сосуде объем жидкости вытекает в 2 раза быстрее, чем при полном опорожнении того же сосуда с изменением напора от
до .

Насадки

Насадок – присоединенная к отверстию короткая труба, в которой имеется напорное движение. (в гидравлике используется термин «насадок»(муж. род), в технике термин «насадка»(жен. род), означающий съемную часть чего-либо.)

Незатопленный насадок – при истечении в газовую среду.

Затопленный – при истечении под уровень.

Внешний цилиндрический насадок (насадок Вентури) – прямая цилиндрическая труба длиной
, присоединенная под прямым углом с внешней стороны резервуара к отверстию того же диаметра.

Находящаяся в ней жидкость (и воздух) уносятся транзитным (поступательно движущимся) потоком. В этой зоне понижается давление, создается вакуум .

В связи с наличием вакуума действующий напор увеличивается на значение вакуума в сжатом сечении. Скорость в сжатом сечении возрастает по сравнению с истечением через отверстие с острой кромкой. Насадок как бы «подсасывает» жидкость из бака.

В то же время в насадке происходят и дополнительные по сравнению с отверстием с острой кромкой потери напора, связанные с внезапным расширением струи за сжатым сечением. Соотношение этих факторов определяет расход через насадок.

Запишем уравнение Бернулли для потока вязкой жидкости. (Сечения 0-0 на поверхности жидкости в баке и сечение 1-1 на выходе из насадка Плоскость сравнения проходит через ось насадка.)

Давления равны атмосферному, сокращаются. Скоростным напором в баке пренебрегаем. Коэффициент Кориолиса полагаем =1.

Раскроем потери через отнесенный к скорости на выходе из насадка коэффициент сопротивления (формула Вейсбаха)



В насадке сопротивление движению состоит из двух сопротивлений

Расчет проводим при больших Re (Re>10 5)

Напомним, что коэффициент сжатия
.

Коэффициент
, отнесенный к скорости в сжатом сечении равен 0,06. Произведем его пересчет для скорости в выходном сечении

Коэффициент потерь при внезапном расширении (отнесенный к скорости за расширением)

Коэффициент сопротивления насадка

Из полученного ранее уравнения Бернулли найдем скорость

Коэффициент скорости

Напомним, что коэффициент скорости есть отношение действительной скорости к теоретической, вычисленной по формуле Торричелли, он меньше единицы.

Коэффициент расхода
, т.к. сжатия потока нет,
.

Опыты показали, что наибольшее значение коэффициента расхода при длине насадка
, когда потерями по длине можно пренебречь. При увеличении длины это уже короткая труба, потери по длине надо учитывать.

Расход через внешний цилиндрический насадок

, где коэффициент расхода
.

Вакуум во внешнем цилиндрическом насадке

Запишем уравнение Бернулли для потока вязкой жидкости.

(Сечения 0-0 и С-С. Плоскость сравнения проходит через ось насадка.)

,
,

Выразим скорость в сжатом сечении через скорость на выходе, учитывая коэффициент сжатия
.

Используем
, получим

Получим Вакуум в цилиндрическом насадке

Предельное значение вакуума ограничено возможным наименьшим давлением в сжатом сечении, которое из условий отсутствия разрыва сплошности жидкости не должно быть меньше давления насыщенных паров жидкости при температуре истечения. Для воды при 20С это давление 2,34 кПа. Давление насыщения сильно зависит от температуры и, например, при 60С 20 кПа.

вод. ст., максимальный напор

При напорах, близких к максимальному возможно появление кавитации и нарушение сплошности потока. Жидкость отрывается от стенок, воздух поступает в насадок, истечение превращается в истечение из отверстия с острой кромкой с соответствующим уменьшением коэффициента расхода. Явление называется срыв вакуума .

Срыв вакуума при истечении из насадка – резкое уменьшение коэффициента расхода, связанное с отрывом жидкости от стенок насадка.

Для устойчивой работы практически принимают максимальный вакуум 8 м вод.ст, максимально допустимый напор 10,7 м.

При истечении через затопленный цилиндрический насадок (под уровень) коэффициент расхода при повышении напора меняется мало, отрыва потока не происходит, однако при напорах больше критического наблюдается нарушение сплошности потока, образование паровых пузырьков с последующим их захлопыванием в зоне повышенного давления. Такое явление называется кавитация .

Внутренний цилиндрический насадок (насадок Борда)

Линии тока при входе во внутренний насадок более искривлены, площадь сжатого сечения меньше, коэффициент сжатия меньше, коэффициент расхода меньше.

Коэффициенты зависят от толщины стенок трубы.

Если насадок работает как отверстие с острой кромкой (при малой длине
)




Работающий полным сечением (заполненный, при
) внутренний насадок:

,
.

Сходящийся конический насадок (конфузор)

Естественно, коэффициент расхода зависит от угла при вершине

Максимальный коэффициент расхода
при
(1324")

В этом насадке (единственном) коэффициент сжатия струи не равен 1.


Шум от неоднородности потока (Гц) носит дискретный характер, причем в спектре обычно имеется несколько составляющих (гармоник):

f=m(nz/60), (16)

где т — номер составляющей (т = 1, 2, 3, ...); п — скорость вращения, об/мин; z — число лопаток колеса.

Борьба с шумом от неоднородности потока ведется по линии улучшения аэродинамических характеристик машин.

В спектрах шуматурбомашин, например вентиляторов, можно различить несколько областей (рис. 44, а):

Рис. 44. Спектры шума источников аэродинамического происхождения:

а — вентилятора; б — мотоциклетного двигателя; в — газотурбинной энергетической установки; 1, 2 — шум выпуска и впуска; 3 — корпусной шум; 4 — шум при прокрутке двигателя

1) область частот механического шума (I), кратных об/с;

2) область шума от неоднородности потока (II с f1, f2, f и т. д.);

3) область вихревого шума (III).

Уровень звуковой мощности вентиляторного шума (дБ) зависит от полного давления Н (кгс/м2) и производительности вентилятора Q (м3/с), а также от критерия шумности т, характеризующего шумность данного типа вентиляторов (т = 35-7-50 дБ):

LP = τ + 25 lgH+10lgQ.

В двигателях внутреннего сгорания основными источниками шума являются шум систем выпуска и впуска, а также шум, излучаемый корпусом двигателя.

Выхлоп двигателей создает наибольший шум, интенсивность которого и спектр зависят от числа выхлопов в секунду, продолжительность выхлопа, от конструкции системы выхлопа и от мощности двигателя. Шум впуска и корпусный шум по своей интенсивности ниже шума выхлопа (рис. 44, б).

В спектрах шума двигателей присутствует значительное количество дискретных составляющих, кратных частоте f, равной числу выхлопов в секунду. Например, для двухтактного двигателя fi = in\60, для четырехтактного fi = in(2*60) (i - число цилиндров; п — скорость вращения коленчатого вала, об/мин).

Интенсивными аэродинамическими шумами характеризуются компрессоры, воздуходувки, пневматические двигатели и другие подобные машины.

Источниками шума компрессорных установок являются выходящие в атмосферу всасывающие и выхлопные (для сброса воздуха) воздуховоды, корпуса компрессоров, стенки воздуховодов, проходящих по помещениям.

В зависимости от конструкции компрессора спектр его шума имеет различный характер. Так, шум поршневых компрессоров носит низкочастотный характер, обусловленный числом сжатия в секунду. Шум турбокомпрессоров, наоборот, высокочастотен, что связано с природой образующегося шума (вихревой шум и шум от неоднородности потока).

В настоящее время большое распространение получили газотурбинные энергетические установки (ГТУ). По своей природе шум в ГТУ делится на шумы аэродинамического (газодинамического) и механического происхождения, причем наибольшее значение имеют аэродинамический шум, излучаемый всасывающим трактом ГТУ. Основным источником этого шума является компрессор, при работе которого уровни суммарного шума достигают 135—145 дБ. В спектре шума всасывания (рис. 44, в) преобладают высокочастотные дискретные составляющие. Основная частота первой из них определяется по формуле (16).

Аэродинамический шум в источнике ГТУ может быть снижен: увеличением зазора между лопаточными решетками; подбором оптимального соотношения чисел направляющих и рабочих лопаток; облагораживанием проточной части компрессоров и турбин и т. п.

Шум механического происхождения (вибрации системы роторов, подшипников, элементов редукторов и т. д.), являющийся превалирующим в машинном отделении, может быть ослаблен за счет проведения мероприятий^ рассмотренных выше для механических шумов.

При вращательном движении тел, например винтов самолета, возникает так называемый шум вращения. Он образуется вследствие того, что тело периодически порождает пульсации давления в каждой точке среды, воспринимаемые как шум.

Основную частоту шума вращения винта, имеющего z лопастей, nppi скорости вращения п (об/мин) определяют по формуле (16). Частоты остальных гармоник кратны этой основной частоте, т. е. f2 = 22; f3 = 3f1 и т. д.

Звуковая мощность шума вращения также зависит от окружной скорости.

В различных турбомашинах (вентиляторах, компрессорах и т. д.) шум вращения значительно ниже по интенсивности, чем вихревой шум и шум от неоднородности, и поэтому может не учитываться.

Одним из самых мощных источников шума является свободная струя (см. рис. 43, в). Шум струи создается в результате турбулентного перемешивания частиц воздуха или газа, имеющих большую скорость истечения, с частицами окружающего воздуха, скорость которых меньше. Эти шумы являются преобладающими при работе реактивных двигателей, при выбросе сжатого воздуха или пара в атмосферу.

Звуковая мощность струи (Вт) зависит главным образом от скорости истечения vc, а также от диаметра отверстия (сопла) Dc и плотности воздуха или газов р:

где к — коэффициент подобия.

Снижение шума струи в источнике представляет большую сложность. Уменьшением градиента скорости в струе, что сделано, в частности, в двухконтурных авиационных двигателях, достигается снижение шума на 5 дБ.

Установка на срезе сопла различных насадок, действие которых основано на трансформации спектра шума (перевод спектра в высокочастотную область и даже в ультразвук), снижает шум на 8—12 дБ. Нужно отметить, что такие насадки могут ухудшать рабочие характеристики струи из-за высокого сопротивления.

В потоках, движущихся со сверхзвуковой скоростью, возникают аэродинамические шумы, обусловленные появлением скачков уплотнения (ударных волн). При движении тела со сверхзвуковой скоростью возникает явление звукового удара или хлопка, например, при полете сверхзвуковых самолетов. При истечении газа в атмосферу со сверхзвуковой скоростью происходят колебания скачков с возникновением резкого дискретного шума.

В большинстве случаев меры по ослаблению аэродинамических шумов в источнике оказываются недостаточными, поэтому дополнительное, а часто и основное снижение шума достигается путем звукоизоляции источника и установки глушителей.

В насосах источником шума является кавитация жидкости, возникающая у поверхности лопастей при высоких окружных скоростях и недостаточном давлении на всасывании.

Меры борьбы с кавитационным шумом — это улучшение гидродинамических характеристик насосов и выбор оптимальных режимов их работы.

Электромагнитные шумы. Шумы электромагнитного происхождения возникают в электрических машинах и оборудовании. Причиной этих шумов является главным образом взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей, а также пондеромоторные силы, вызываемые взаимодействием магнитных полей, создаваемых токами.

Снижение электромагнитного шума осуществляется путем конструктивных изменений в электрических машинах, например, путем изготовления скошенных пазов якоря ротора. В трансформаторах необходимо применять более плотную прессовку пакетов, использовать демпфирующие материалы.

При работе электрических машин возникает также аэродинамический шум (в результате вращения ротора в газовой среде и движения воздушных потоков внутри машины) и механический шум, обусловленный вибрацией машины из-за неуравновешенности ротора, а также от подшипников и щеточного контакта. Хорошая притирка щеток может уменьшить шум на 8—10 дБ.

Изменение направленности излучения шума. В ряде случаев величина показателя направленности (ПН) достигает 10—15 дБ, что необходимо учитывать при проектировании установок с направленным излучением, соответствующим образом ориентируя эти установки по отношению к рабочим местам. Например, выхлоп сжатого воздуха, отверстие воздухозаборной шахты вентиляционной или компрессорной установки должны располагаться так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места или от жилого дома.

Рациональная планировка предприятий и цехов, акустическая обработка помещений. Как видно из выражения (12), шум на рабочем месте может быть уменьшен увеличением площади S, что может быть достигнуто увеличением расстояния от источника шума до расчетной точки.

Насадком называется присоединенная к отверстию в стенке трубка, длина которой составляет три-четыре диаметра. Различают следующие основные типы насадков (рис. 5.4):

цилиндрические (внешние - а и внутренние - б );

конические (сходящиеся - в и расходящиеся - г )

коноидальные (с закругленными очертаниями по форме сжатия струи - д ).

Большое влияние на скорость истечения и расход из насадков оказывает форма входной кромки. Например, плавное закругление на входе может полностью устранить внутреннее сжатие струи и вызвать увеличение скорости и расхода.

Рис. 5.4. Истечение жидкости через насадки

Внешний цилиндрический насадок (рис. 5.5). Струя жидкости при выходе в насадок сжимается, после чего вновь расширяется и заполняет все сечение насадка. В промежутке между сжатым сечением и стенками насадка образуется вихревая зона. Так как струя выходит из насадка полным сечением (без сжатия), то коэффициент сжатия струи e= 1, а коэффициент расхода m = ej = j, т.е. для насадка коэффициенты расхода и скорости имеют одинаковую величину.

Составляя уравнение Бернулли для сечений I-I и II-II, взятых на свободной поверхности жидкости в сосуде и в месте выхода струи из насадка, и рассуждая точно так же, как и в случае истечения жидкости из отверстия в тонкой стенке, получаем следующие расчетные формулы:

для скорости истечения из насадка

(5.9)

для расхода при истечении из насадка

. (5.10)


Рис. 5.5. Внешний цилиндрический насадок

Коэффициент скорости насадка j можно определить, зная величину коэффициента сопротивления насадка z н. Для этого определим потери напора при истечении жидкости через насадок, которые в данном случае обуславливаются сопротивлением отверстия в тонкой стенке и внезапным расширением струи. Что касается потерь напора по длине насадка, то их величина незначительна и ими можно пренебречь.

Подставляя

получаем ,

где выражение в скобках представляет собой z н.

Зная, что z т.с = 0,06, определим z в.р по формуле (4.42),

получим .

Таким образом, коэффициент скорости для насадка будет равен

.

Следовательно, и коэффициент расхода насадка m= 0,82.

В случае истечение жидкости под уровень формулы для скорости и расхода принимают вид:

где - разность уровней или напоров воды.

Сопоставляя значение коэффициентов истечения для насадков и отверстий в тонкой стенке, видно, что расход жидкости из цилиндрического насадка больше, чем из отверстия в тонкой стенке:

,

а скорость значительно меньше, чем при истечении из отверстия

.

Внешний цилиндрический насадок, увеличивая расход жидкости, вместе с тем дает и значительное уменьшение скорости истечения. Объясняется это тем, что в вихревой зоне насадка, после того как воздух, отжатый струей, будет увлечен потоком наружу, образуется вакуум. Наличие пониженного давления в области сжатого сечения струи порождает фактор подсасывания жидкости, который оказывает более сильное влияние на расход, чем дополнительное сопротивление вследствие трения по длине и расширения струи в трубке. При значительной длине трубки эффект подсасывания не компенсирует дополнительных потерь, благодаря чему расход из трубке станет равным или меньше, чем при свободном истечении из отверстия в тонкой стенке. Хотя при этом потери напора растут, их влияние на уменьшение скорости во входном сечении меньше, чем влияние увеличения живого сечения струи.

Для определения величины вакуума в сжатом сечении струи (см. рис. 5.5) составим уравнение Бернулли для двух сечений: поверхности воды в сосуде I-I и сжатого сечения С-С:

.

Так как p l - p c есть величина вакуума p вак, Н с = 0; V 1 = 0;a l = a с = 1, получим

.

Выразим скоростной напор в сжатом сечении через напор перед насадком Н из формулы (5.9):

а из уравнения неразрывности найдем .

Тогда .

Подставляя полученное выражение в исходное уравнение, получаем:

(5.11)

Таким образом, при постоянных параметрах j, ζ т.с и ε вакуум в насадке (в сжатом сечении) пропорционален напору.

Подставив числовые значения коэффициента в формулу (5.11), получим значения вакуума при истечении жидкости в атмосферу:

.

Максимальная величина вакуума, равная 10 м, наступает при напоре

.

При понижении абсолютного давления в насадке до давления насыщенных паров возникает кавитационный режим истечения. Выделяющиеся внутри жидкости пары будут заполнять струю, которая начнет терять свою сплошность, в результате уменьшится расход жидкости.

Дальнейшее увеличение напора приводит к отрыву струи жидкости от внутренних стенок насадка (рис. 5.6). При этом понижается коэффициент расхода и, следовательно, пропускная способность насадка. Насадок работает как отверстие в тонкой стенке. Такое явление называется срывом истечения через насадок .

Внутренний цилиндрический насадок (рис. 5.7). В этом насадке явление протекает, как и во внешнем насадке. Однако вследствие большого сжатия струи на входе коэффициенты скорости и расхода для внутреннего насадка меньше, чем внешнего, m = j = 0,71.

Рис. 5.6. Истечение через насадок при срыве

Рис. 5.7. Внутренний цилиндрический насадок

При малой длине внутреннего цилиндрического насадка (l < 1,5d ) струя вытекает из него, не касаясь стенок. В этом случае j= 0,98; e = 0,5; m = 0,49.

Гидравлические сопротивления во внутреннем насадке больше, чем во внешнем, следовательно, в нем меньше вакуум и расход жидкости. Поэтому, как правило, внешние насадки предпочитают внутренним, ввиду меньших гидравлических сопротивлений.

Конический сходящийся насадок (рис. 5.8). В коническом сходящемся насадке явление внутреннего сжатия сказывается меньше, чем в цилиндрическом насадке, но зато появляется сжатие струи по выходе из насадка.

Рис. 5.8. Конический сходящийся насадок

Это влечет за собой, с одной стороны, увеличение коэффициента скорости, а с другой - уменьшение коэффициента сжатия. Так как разность между сжатым сечением и расширенной частью струи в коническом сходящемся насадке меньше, чем в цилиндрическом, происходит уменьшение потерь напора на расширение струи и соответственно увеличение расхода. Однако это имеет место до значения угла конусности q = 13º. В последующем вследствие чрезмерного сжатия струи потери возрастают и расход уменьшается.

В среднем при углах конусности 12-14º можно принимать:

e = 0,98;j = 0,96;m = 0,94.

Рис. 5.9. Конический расходящийся насадок

Конический расходящийся насадок (рис. 5.9). Расширение струи в таком насадке происходит более резко, чем в цилиндрическом. Поэтому его гидравлическое сопротивление больше, а коэффициент скорости меньше. Вследствие того что в расходящемся насадке потери напора от сжатого сечения к расширенному значительно больше, чем в коническом сходящемся и цилиндрическом, происходит снижение коэффициента расхода. Наибольшей пропускной способностью он обладает при углах конусности 6-8º.

Конические расходящиеся насадки (диффузоры) нашли широкое применение в насосах, гидроэлеваторах и т.п., где требуется довести до минимума кинетическую энергию в отходящем потоке.

При угле конусности 5º для конического расходящегося насадка с округленной входной кромкой можно принять , .

Следует отметить, что этот коэффициент расхода относится к большему (выходному) сечению насадка. Если же отнести этот коэффициент к входному отверстию, то он окажется значительно больше и может достигнуть 2-3.

Коноидальный насадок (см. рис. 5.4, д ). Цилиндрический насадок, имеющий плавный вход по форме струи, выходящий из отверстия, называется коноидальным. Истечение жидкости через такой насадок происходит при наименьшем сопротивлении (), что способствует получению дальнобойных струй с большой начальной скоростью полета. Однако из-за сложности изготовления такие насадки в пожарном деле применяются недостаточно широко.

Значения коэффициентов для различных отверстий и насадков, отнесенных к выходному сечению, приведены в табл. 5.1

Таблица 5.1

Особенности истечения из некруглых отверстий. В зависимости от формы отверстия, через которое происходит истечение, форма поперечного сечения струи имеет самый разнообразный вид (рис. 5.10). Например, поперечное сечение струи, вытекающее через треугольное отверстие, приобретает форму с тремя тонкими ребрами: при истечении через квадратное отверстие - крестообразную и через круглое - эллиптическую. Изменение формы струи происходит под действием сил поверхностного натяжения. Это явление называется инверсией струи . В дальнейшем форма поперечного сечения по длине струи не остается постоянной, она под действием сил поверхностного натяжения все время претерпевает соответствующее изменение. В результате нарушается сплошность струи и она распадается на отдельные капли.

Рис. 5.10. Инверсия струи:

а - форма отверстий; б - форма сечения струи

Исходя из сказанного, следует, что для получения дальнобойных струй необходимо использовать насадки с круглым сечением, в которых действие сил поверхностного натяжения взаимно уравновешивается. Для предохранения выходных кромок насадков от различного рода повреждений предусматриваются специальные кольцевые выточки.

Расчетные формулы для расхода и напора из насадков. Формулу для определения расхода можно представить в виде

где называется проводимостью насадка .

Напор перед насадком определяется из выражения

где сопротивление насадка .

Значение и насадков при для определения расходов , л/с, и напора , м, для пожарных стволов приводится в табл. 5.2.

Таблица 5.2

Диаметр насадка, мм s p
13 2,89 0,588
16 1,26 0,891
19 0,634 1,26
22 0,353 1,68
25 0,212 2,17
28 0,135 2,72
32 0,079 3,56
38 0,04 5,00
50 0,013 8,77
65 0,004 14,74
Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: