Напряжение что характеризует. Электрическое напряжение. Требования к измерительным приборам

В электротехнике для описания процессов, протекающих внутри электрических цепей, используются термины «ток», «напряжение» и «сопротивление». Каждый из них имеет собственное назначение со специфическими характеристиками.

Электрический ток

Слово используется для характеристики движения заряженных частиц (электроны, дырки, катионы и анионы) через определенную среду вещества. Направление и количество носителей заряда определяет тип и силу тока.

Основные характеристики тока, влияющие на его практическое применение

Обязательным требованием для протекания зарядов является наличие цепи или, другим словами, замкнутого контура, создающего условия для их передвижения. Если внутри движущихся частиц образуется разрыв, то их направленное перемещение сразу прекращается.

На этом принципе работают все выключатели и защиты, используемые в электрике. Они создают разделение подвижными контактами токопроводящих частей между собой и этим действием прерывают протекание электрического тока, отключая прибор.

В энергетике наибольшее распространение получил метод создания электрического тока за счет передвижения электронов внутри металлов, изготовленных в виде проводов, шин или других токопроводящих частей.

Кроме этого способа также используется создание тока внутри:

1. газов и жидкостей-электролитов за счет движения электронов или катионов и анионов - ионов с положительными и отрицательными знаками заряда;

2. среды из вакуума, воздуха и газов при условии передвижения электронов, вызванного явлением термоэлектронной эмиссии;

3. полупроводниковых материалов вследствие перемещения электронов и дырок.

Электрический ток может возникнуть при:

    приложении к заряженным частицам внешней разности электрических потенциалов;

    нагреве проводников, не являющихся в данный момент сверхпроводниками;

    протекании химических реакций, связанных с выделением новых веществ;

    воздействии приложенного на проводник магнитного поля.

Форма сигнала электрического тока может быть:

1. постоянной в виде прямой линии на временном графике;

2. переменной синусоидальной гармоникой, хорошо описываемой основными тригонометрическими соотношениями;

3. меандром, грубо напоминающим синусоиду, но с резкими, ярко выраженными углами, которые в отдельных случаях могут быть хорошо сглажены;

4. пульсирующей, когда направление остается одним и тем же без изменения, а амплитуда колеблется периодически от нулевого до максимального значения по вполне определенному закону.


Электрический ток может совершать полезную для человека работу, когда он:

    преобразуется в световое излучение;

    создает нагрев тепловых элементов;

    совершает механическую работу за счет притяжения или отталкивания подвижных якорей либо вращения роторов с приводами, закрепленных в подшипниках;

    формирует электромагнитное излучение и в некоторых других случаях.

При прохождении электрического тока по проводам может создаваться вред, вызываемый:

    излишним нагревом токонесущих цепей и контактов;

    образованием в магнитопроводах электрических машин;

    излучением электроэнергии в окружающую среду и некоторыми подобными явлениями.

Конструкторы электрических приборов и разработчики различных схем учитывают перечисленные возможности электрического тока в своих устройствах. Например, вредное воздействие вихревых токов в трансформаторах, двигателях и генераторах уменьшается за счет шихтовки сердечников, используемых для пропускания магнитных потоков. В то же время вихревой ток успешно применяют для разогрева среды внутри электрических печей и микроволновок, работающих на индукционном принципе.

Переменный электрический ток с синусоидальной формой сигнала может иметь разную частоту колебаний в единицу времени - секунду. Промышленная частота электроустановок в разных странах стандартизирована числами 50 или 60 герц. Для других целей электротехники и радиодела применяются сигналы:

    низкочастотные, имеющие меньшие значения;

    высокочастотные, значительно превышающие спектр промышленных устройств.

Обычно принято, что электрический ток создается движением заряженных частиц внутри определенной макроскопической среды и его называют током проводимости . Однако, может возникнуть и другой вид тока, называемый конвекционным, когда передвигаются макроскопические заряженные тела, например, дождевые капли.

Как образуется электрический ток в металлах

Перемещение электронов под действием постоянно приложенной к ним силы вполне можно сравнить со снижением парашютиста с раскрытым куполом. В обоих случаях происходит равноускоренное движение.

Парашютист движется за счет притяжения к земле силой тяжести, которой противостоит сила сопротивления воздуха. На электроны воздействует приложенная к ним сила , а мешают его движению непрерывные соударения с другими частицами - ионами кристаллических решеток, за счет чего гасится часть воздействия приложенной силы.


В обоих случаях средняя скорость парашютиста и перемещения электронов достигает постоянной величины.

При этом создается довольно уникальная ситуация, когда скорость:

    собственного передвижения одного электрона определяется величиной порядка 0,1 миллиметра в секунду;

    протекание электрического тока соответствует значительно большей величине - скорости распространения световых волн: около 300 тысяч километров в секунду.

Таким образом, создается в том месте, где к электронам приложено напряжение, и в результате оно начинает перемещаться со скоростью света внутри токопроводящей среды.

При движении электронов внутри кристаллической решетки металла возникает еще одна интересная закономерность: его сталкивание происходит примерно с каждым десятым встречным ионом. То есть, около 90% столкновений с ионами он успешно избегает.


Объяснить это явление помогают законы не только фундаментальной классической физики, как принято понимать большинством людей, а действующие дополнительные закономерности, описанные теорией квантовой механики.

Если кратко выразить их действие, то можно представить, что передвижению электронов внутри металлов мешают тяжелые «качающиеся» большие ионы, которые оказывают дополнительное сопротивление.


Особенно этот эффект хорошо заметен при нагреве металлов, когда «качания» тяжелых ионов увеличиваются и снижают электрическую проводимость кристаллических решеток проводников.

Поэтому при нагреве металлов у них всегда повышается электрическое сопротивление, а при охлаждении - увеличивается проводимость. Когда температура металла снижается до критических значений, приближенных к величине абсолютного нуля, во многих из них возникает явление сверхпроводимости.

Электрический ток, в зависимости от своей величины, способен совершать различную работу. Для количественной оценки его возможностей принята величина, называемая силой тока. Ее размерностью в международной системе измерений является 1 ампер. Для обозначения силы тока в технической литературе принят индекс «I».

Электрическое напряжение

Этот термин используется как характеристика физической величины, выражающей затраченную работу по переносу пробного единичного электрического заряда из одной точки в другую без изменения характеров размещения остальных зарядов на действующих источниках полей.

Поскольку начальная и конечная точки обладают различными потенциалами энергии, то работа на перемещение заряда, или напряжение, совпадает с соотношением разности этих потенциалов.

В зависимости от протекающих токов используются различные термины и способы вычисления напряжения. Оно может быть:

1. постоянным - в цепях электростатики и постоянного тока;

2. переменным - в схемах с переменными и синусоидальными токами.

Для второго случая используются такие дополнительные характеристики и разновидности напряжения, как:

    амплитуда - наибольшее отклонение от нулевого положения оси абсцисс;

    мгновенная величина, которая выражается в конкретный момент времени;

    действующее, эффективное или, называемое по-другому, среднеквадратичное значение, определяемое по совершаемой активной работе одного полупериода;

    средневыпрямленное, рассчитываемое по модулю выпрямленного значения одного периода гармоники.


Для количественной оценки напряжения введена международная единица 1 вольт, а ее обозначением стал символ «U».

При транспортировке электрической энергии по проводам воздушных линий конструкция опор и их габариты зависят от значения используемого напряжения. Его величину между проводами фаз называют линейной, а относительно каждого провода и землей - фазной.

Это правило применяется ко всем видам воздушных линий.


В бытовых электрических сетях нашей страны стандартом принято трехфазное напряжение 380/220 вольт.

Электрическое сопротивление

Термин применяется для характеристики свойств вещества ослаблять прохождение через него электрического тока. При этом могут выбираться разные среды, изменяться температура вещества или его габариты.

У цепей постоянного тока сопротивление совершает активную работу, поэтому его называют активным. Оно для любого участка прямо пропорционально приложенному напряжению и обратно пропорционально - проходящему току.

В цепях переменного тока введены понятия:

    импеданса;

    волнового сопротивления.

Электрический импеданс по-другому называют комплексным или полным сопротивлением с составляющими частями:

    активной;

    реактивной.

Реактивное сопротивление, в свою очередь, может быть:

    емкостным;

    индуктивным.

Соотношения между составляющими импеданса описываются треугольником сопротивлений .


При проведении расчетов электродинамики волновое сопротивление ЛЭП определяется соотношением напряжения от падающей волны к величине тока, проходящей по линии волны.

Величиной сопротивления принята международная единица измерения в 1 Ом.

Взаимосвязь тока, напряжения, сопротивления

Классическим примеров выражения соотношений между этими характеристиками является сравнение с гидравлической схемой, в которой сила движения потока жизни (аналог - величина тока) зависит от значения приложенной к поршню силы (созданного напряжения) и характера магистралей потока, выполненных сужениями (сопротивлением).

Для замера основных электрических величин электроэнергии применяют амперметры, вольтметры и омметры.


Амперметр замеряет ток, проходящий по цепи. Поскольку на всем замкнутом участке он не изменяется, то амперметр врезают в любом месте между источником напряжения и потребителем, создавая прохождение зарядов через измерительную головку прибора.

Вольтметром измеряют напряжение на клеммах подключенного к источнику тока потребителя.

Замеры сопротивления омметром могут выполняться только на обесточенном потребителе. Это объясняется тем, что омметр выдает калиброванное напряжение и замеряет ток, проходящий по измерительной головке, который переводится в Омы за счет деления напряжения на полученное значение тока.

Любое подключение маломощного постороннего напряжения при выполнении измерения создаст дополнительные токи и исказит результат. Учитывая, что внутренние цепи омметра изготавливаются маломощными, то при ошибочных замерах сопротивления при поданном постороннем напряжении довольно часто прибор выходит из строя за счет того, что у него выгорает внутренняя схема.

Знание основных характеристик тока, напряжения, сопротивления и зависимостей между ними позволяет электрикам успешно выполнять свою работу и надежно эксплуатировать электрические системы, а допускаемые ошибки очень часто заканчиваются несчастными случаями и травмами.

Общие сведения

Измерение тока и напряжения осуществляется в цепях постоян­ного, переменного токов широкого диапазона частот и импульс­ных.

Наиболее высокую точность измерений получают в цепях постоянного тока. При измерениях в цепях переменного тока точность измерений понижается с повышением частоты; здесь кроме оценки среднеквадратичного, средневыпрямленного, среднего и максималь­ного значений иногда требуется наблюдение формы исследуе­мого сигнала и знание мгновенных значений тока и напряже­ния.

Измерители тока и напряжения независимо от их назначения должны при включении не нарушать режима работы цепи измеряемого объекта; обеспечивать малую погрешность измерений, исключив при этом влияние внешних факторов на работу прибора, высокую чувствительность измерения на оптимальном пределе, быструю готовность к работе и высокую надежность.

Выбор приборов, выполняющих измерения тока и напряжения, определяется совокупностью многих факторов, важнейшие из кото­рых: род измеряемого тока; примерные диапазон частот измеряе­мой величины и амплитудный диапазон; форма кривой измеряемого напряжения (тока); мощность цепи, в которой осуществляется измерение; мощность потребления прибора; возможная погрешность измерения (ниже будут указаны требования к конкретным приборам).

Если необходимая точность измерения, допустимая мощность потребления и другие требования могут быть обеспечены ампер­метрами и вольтметрами электромеханической группы, то следует предпочесть этот простой метод непосредственного отсчета. В мало­мощных цепях постоянного и переменного токов для измерения напряжения обычно пользуются цифровыми и аналоговыми элек­тронными вольтметрами. Если необходимо измерить напряжения с более высокой точностью, следует использовать приборы, дей­ствие которых основано на методах сравнения, в частности на ме­тоде противопоставления.

Измерение тока возможно методом непосредственной оценки аналоговыми и цифровыми амперметрами, а также косвенное . При этом напряжение измеряется на образцовом резисторе с из­вестным сопротивлением. Для исследования формы и определения мгновенных значений напряжения и тока применяют осцилло­графы .

Измерение напряжения в цепях постоянного тока

Метод непосредственной оценки. При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором необходимо измерить напряжение; При измерении напряжения на нагрузке в цепи с источником энер­гии, ЭДС которого и внутреннее сопротивление , вольтметр включают параллельно нагрузке (рис. 7.1). Если внутреннее сопро­тивление вольтметра , то будет иметь место следующая отно­сительная погрешность измерения напряжения:

где - действительное значение напряжения на нагрузке до включения вольтметра; - измеренное значение напряжения на нагрузке .

Отношение сопротивлений обратно пропорционально отношению мощности потребления вольтметра к мощности цепи , поэтому

(7.2)

( как при , так и при ).

Для уменьшения методической погрешности измерения напряжения мощность потребления вольтметра должна быть мала , а его внутреннее сопротивление велико .

Измерение напряжения в цепях постоянного тока может быть выпол­нено любым измерителем напряжения, работающим на постоянном токе магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми электронными вольтметрами). Выбор измерителя напряжения обусловлен мощно­стью объекта измерения и необходимой точностью. Диапазон изме­ряемых напряжений лежит в пределах от микровольт до десятка киловольт. Если объект измерения мощный, используются элек­тромеханические вольтметры и мощность потребления ими не учитывается, если же объект измерения маломощный, то мощность по­требления должна быть учтена, либо используются электронные вольтметры.

Методы сравнения . Компенсационный метод (метод противопоставления) измерениязаключается в уравновешивании, осуществляемом включением на индикатор равновесия либо двух электрически не связанных между собой, но противоположно направленных напряжений или ЭДС, либо двух раздельно регулируемых токов. Компенсационный метод используют для непосредственного срав­нения напряжений или ЭДС, тока и косвенно для измерения других электрических, а также неэлектри­ческих величин, преобразуемых в электрические.

Рисунок 7.2 –Схема компенсации напряжений

Применяют следующие схемы компенсации: а) напряжений или ЭДС (рис. 7.2); б) электрических токов (рис. 7.3).

Схема, показанная на рис. 7.2, наиболее распространенная. В ней измеряемое напряжение компенсируется равным, но про­тивоположным по знаку известным напряжением . Падение на­пряжения создается током на изменяемом по значению ком­пенсирующем образцовом сопротивлении . Изменение про­исходит до тех пор, пока не будет равно . Момент компен­сации определяют по отсутствию тока в цепи магнитоэлектриче­ского гальванометра ; при этом мощность от объекта измерения не потребляется.

Рисунок 7.3 – Схема компенсации токов

Компенсационный метод обес­печивает высокую точность изме­рения.

Устройства, служащие для вы­полнения измерений компенсацион­ным методом, называют потенциометрами или компенсаторами. В практических схемах компенсаторов для обеспечения необходи­мой точности измерения ток в рабочей цепи определяют не ампер­метром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС нормального элемента. Нормальные эле­менты обеспечивают постоянную во времени ЭДС, равную 1,01865 В при температуре 20 °С, внутреннее сопротивление 500-1000 Ом, ток перегрузки 1 мкА. С изменением температуры окружающей среды значение ЭДС уменьшается на каждый градус повышения температуры:

где - ЭДС при температуре ; - ЭДС при 20 s w:space="720"/>"> ;.

Схема компенсатора представлена на рис. 75. Она содержит источник вспомогательной ЭДС ; для питания рабочей цепи, в которую включают регулировочное , компенсирующее и образцовое сопротивления. К зажимам НЭ подключают нор­мальный элемент, ЭДС которого , к зажимам X – искомую ЭДС . В качестве индикатора равновесия используют высоко­чувствительный магнитоэлектрический гальванометр G. При работе с компенсатором выполняют две операции:

1) устанавливают ток в рабочей цепи компенсатора с помощью источника вспомогательной ЭДС (положение 1 переключателя В);

2) измеряют искомую ЭДС (положение 2 переключателя В).


Рисунок 7.4 – Схема компенсатора

Для установки рабочего тока предварительно определяют температуру окружающей среды, затем по (7.3) вычисляют точное значение ЭДС нормального элемента для данной температуры. Далее устанавливают образцовое сопротивление , значение которого выбирают в зависимости от значений тока в рабочей цепи и ЭДС при температуре (сопротивление состоит из катушки с постоянным значением сопротивления и последовательно соединенной с ней температурной декадой). Затем переключатель В ставят в положение 1 и ЭДС нормального элемента противопоставляют падению напряжения на , которое регулируется с помощью изменяющего значение тока в рабочей цепи резистором . Момент компенсации соответствует нулевому отклонению гальванометра , т. е. .

После установления рабочего тока для измерения пере­ключатель В ставят в положение 2 и регулировкой образцового компенсирующего сопротивления вновь доводят до нуля ток в цепи гальванометра . Тогда

где I - значение тока, установленное при положении 1 переклю­чателя В; - значение образцового компенсирующего сопро­тивления, при котором имеет место состояние равновесия.

Сопротивление выполняют по специальным схемам, кото­рые обеспечивают постоянное сопротивление между точками 3, 4 и переменное сопротивление между точками 3, Д, а также необхо­димое число знаков и точность отсчета.

Указанным условиям удовлетворяют схемы с замещающими (рис. 7.5) и шунтирующими декадами (рис. 7.6). В схеме с замещаю­щими декадами все секции верхних декад полностью дублированы соответствующими секциями нижних декад. Переключатели двух одинаковых декад связаны механически. При перемещении пере­ключателей общее сопротивление остается неизменным: если умень­шаются значения сопротивлений верхних декад, то увеличиваются значения сопротивлений нижних декад, и наоборот. Компенсирую­щее напряжение можно снимать с верхних или нижних декад. Каждая последующая декада имеет сопротивление секции в десять раз меньше предыдущей. В схеме с шунтирующими декадами при каждом положении двойных переключателей одна секция верхней декады шунтируется девятью секциями нижней декады, при этом общее сопротивление между точками 3 и 4 (см. рис. 7.4) остается неизменным. Ток через секции сопротивлений нижней декады в десять раз меньше тока через секции сопротивлений верхней декады, т. е.

Рисунок 7.5 – Схема с замещающими декадами

Компенсирующее напряжение можно определить так

где , - соответственно число включенных секции верхней и нижней декад; , - падения напряжения на отдельных секциях соответствую­щих декад.

Рассмотренные вари­анты выполнения сопро­тивления обеспечи­вают неизменность его полного значения, а сле­довательно, и неизмен­ность тока в момент компенсации, если ЭДС вспомогательного источ­ника .

Рисунок 7.6 – Схема с шунтирующими декадами

В зависимости от зна­чения сопротивления ра­бочей цепи различают компенсаторы постоянного тока большого сопротивления (высокоомные 10-40 кОм, ток рабочей цепи , порядок измеряемого напряжения 1-2,5 В, погрешность измерения 0,02 % от измеряемой величины) и малого сопротивления (низкоомные 10-1000 Ом; ток рабочей цепи , по­рядок измеряемого напряжения до 100 мВ, погрешность измере­ние 0,6 % от измеряемого значения).

Схемные решения и конструкции компенсаторов постоянного тока могут быть различны.

Высокоомные компенсаторы используют для поверки магнитоэлектрических, электродинамических вольтметров, для расширения пределов измерения напряжения компенсаторами применяют высокоомные резисторные делители напряжения с отводами от опре­деленных частей, что позволяет уменьшить измеряемое напряжение в раз (10, 100, 1000) до значения, близкого к верхнему пределу измерения компенсатора. При использовании делителя напря­жения от объекта измерения потребляется некоторая мощность, т. е. теряется одно из основных преимуществ компенсационного метода.

При измерении ЭДС источников с большим внутренним сопро­тивлением или напряжений, действующих в высокоомных цепях, входное сопротивление магнитоэлектрических и электронных вольтмет­ров может быть недоста­точно большим, поэтому целесообразно использо­вать дифференциальный или компенсационный метод.


Рисунок 7.7 – Схема измерения постоянного напряжения дифференциальным методом

Дифференциальный метод основан на изме­рении разности между измеряемым и образцовым напряжением при их неполной компен­сации. Схема измерения представлена на рис. 7.7. Высокоомный электронный вольтметр с чувствительным пределом служит для измерения разностного напряжения между измеряемым и образ­цовым напряжениями. Магнитоэлектрический аналоговый или цифровой вольтметр используется для измерения образцового напряжения . Рекомендуется при измерить вольтмет­ром ориентировочное значение , а уже затем установить по вольтметру удобное для отсчета напряжение . Измеряе­мое напряжение при указанной полярности включения вольт­метра определяется как .

Дифференциальный метод обеспечивает высокую точность изме­рения напряжения. Погрешность измерения определяется в основ­ном погрешностью вольтметра, измеряющего .

Входное сопротивление цепи

и намного превышает входное сопротивление вольтметра

Гальванометрические компенсаторы служат для измерения ма­лых постоянных напряжений (порядка В). Основными эле­ментами гальванометрического компенсатора (рис. 7.8) являются: измерительный механизм магнитоэлектрического зеркального галь­ванометра , образцовый резистор обратной связи , фоторезисторы и , источники постоянного напряжения с , магнитоэлектрический микроамперметр. На зеркальце гальвано­метра направлен луч света от прожектора Пр. При отсутствии напряжения луч света, отраженный от зеркала, оди­наково освещает фотосопро­тивления, в результате ток . При подаче на вход измерителя напряжения в цепи гальванометра появ­ляется ток , подвижная часть гальванометра повора­чивается на некоторый угол и происходит перераспределе­ние освещенности фоторези­сторов и изменение их соп­ротивлений. Согласно схеме включения фоторезисторов и полярности сопротивление фоторезистора уменьшится, a увеличится. Через резистор потечет ток , создавая на компенсирующее напряжение , почти равное измеряемому напряжению . Значение тока авто­матически изменяется в зависимости от изменения измеряемого напряжения , но всегда так, что выполняется условие , обеспечиваемое за счет небольших изменений тока в цепи галь­ванометра:

Чем чувствительнее гальванометр, тем при меньших измене­ниях произойдет соответствующее изменение тока , нужное для выполнения условия .

Повышение чувствительности достигается благодаря примене­нию специальной конструкции гальванометра, что обеспечивает при токах порядка максимальный угол поворота подвижной части.

Значение компенсирующего тока зависит от значений , относительного изменения фотосопротивлений и может достигать нескольких десятков микроампер.

Рисунок 7.8 – Схема гальванометрического компенсатора

Гальванический компенсатор имеет высокую чувствительность при высоком входном сопротивлении.

Электрометрические компенсаторы - измерители напряжения, использующие электромеханический электрометр и имеющие весьма высокое входное сопротивление (). Они просты и удобны в эксплуатации. Электромеханический электрометр представляет собой чувствительный электростатический измеритель­ный механизм, легкая подвижная часть которого подвешивается на тонкой упругой нити. В механизме применяется световой ука­затель положения подвижной части. Схема электрометрического компенсатора представлена на рис. 7.9, где электрический электро­метр, состоящий из двух неподвижных обкладок 1, 2 иподвижной обкладки 3, расположенной симметрично относительно неподвиж­ных. К подвижной обкладке прикреплено миниатюрное зеркальце. На неподвижные обкладки подается напряжение возбуждения , что позволяет повысить чувствительность и возможность установки нуля показаний электрическим путем (при замкнутых зажимах посредством переменного резистора ).

Принцип работы элект­рометрического компенса­тора аналогичен работе гальванометрического ком­пенсатора.

При подключении изме­ряемого напряжения подвижная часть электро­метра Э повернется на не­который угол, что приве­дет к перераспределению световых потоков, освещаю­щих фоторезисторы и , к появлению тока компенсации и соответст­венно напряжения , уравновешивающего измеряемое напряжение . Подвижная часть электрометра будет отклоняться до тех пор, пока не наступит равенство напряжений . Так как сопротивление резистора обратной связи R K может быть незначительным, то ток может быть сравнительно большим и измеряться микроамперметром. Входной ток компенсатора опре­деляется токами утечки, поэтому он мал, а, следовательно, входное сопротивление велико ( Ом). Кроме измерителей напря­жения строятся и высокочувствительные электрометрические изме­рители тока.

Рисунок 7.9 – Схема электрометрического компенсатора

Измерение постоянного тока

Метод непосредственной оценки . Амперметр включается после­довательно в разрыв исследуемой цепи.

Последовательное включение амперметра с внутренним сопро­тивлением в цепь с источником ЭДС и сопротивлением (сопротивление нагрузки и источника) приводит к возрастанию общего сопротивления и уменьшению протекающего в цепи тока.

Относительная погрешность измерения тока

где - действительное значение тока в цепи до включения амперметра; - измеренное значение тока в цепи .

Отношение сопротивлений можно заменить отношением мощ­ностей и потребления соответственно амперметра и самой цепи:

Погрешность измерения тем меньше, чем меньше мощность потребления амперметра по сравнению с мощностью потребле­ния цепи , в которой осуществляется измерение. Поэтому амперметр, включаемый последовательно в цепь измерения, должен обладать малым сопротивлением, т. е. .

Диапазон значений постоянных токов, с измерением которых приходится встречаться в различных областях техники, чрезвы­чайно велик (от токов А до десятков и сотен тысяч ампер). Поэтому, естественно, методы и средства измерения их различны .

Измерение постоянного тока может быть выполнено любым измерителем постоянного тока: магнитоэлектрическими, электродинамическими, аналоговыми и цифровыми электронными амперметрами. При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения , магнитоэлектриче­ского измерителя, последний применяют совместно с усилителем постоянного тока. Усиления тока можно добиться при включении биполярных транзисторов по схеме с общим эмиттером (ЭП) , которая обеспечивает малое входное сопротивление усилителя.

Токи А можно измерить непосредственно с помощью высокочувствительных магнитоэлектрических зеркальных галь­ванометров и гальванометрических компенсаторов.

Косвенное измерение тока. Кроме прямого измерения токов амперметрами возможно косвенное измерение токов с помощью образцовых резисторов, включаемых в разрыв цепи, и высоко­чувствительных измерителей напряжения. Измеряемый ток опре­деляется , где - падение напряжения на образцовом резисторе , измеренное вольтметром, компенсатором постоянного тока.

Для получения минимальных погрешностей измерения сопро­тивление резистора должно быть много меньше сопротивления цепи, в которой измеряется ток.

В резистивных преобразователях тока в напряжение применяют высокоомные резисторы, значение сопротивления которых зависит от протекающего через резистор тока и изменяется во времени под влиянием температуры, влажности и т. п. Номинальные значе­ния сопротивлений выпускаемых высокоомных резисторов до Ом значительно зависят от приложенного напряжения, темпе­ратурный коэффициент до и временной дрейф до несколь­ких процентов в год.

В узкой полосе частот высокоомный резистор может быть пред­ставлен в виде параллельного соединения сопротивления и емкости (порядка десятых долей пикофарады).

В емкостных преобразователях тока в напряжение скорость изменения напряжения) применяют конденсаторы с высококачественной изоляцией или специальные воздушные конденсаторы. Погрешность преобразования определяется погрешностью измере­ния емкости конденсатора и изменением емкости в процессе накоп­ления заряда под влиянием медленной поляризации диэлектрика, поэтому емкость конденсатора зависит от частоты измеряемого тока. Для конденсатора характерны те же источники помех по току и напряжению, что и для резистора. Шунтирующее сопротивление конденсатора достигает Ом.

В логарифмирующих преобразователях тока в напряжение при­меняются электровакуумные и полупроводниковые приборы с вольтамперной характеристикой, описываемой логарифмической зависи­мостью. Сопротивление логарифмирующего элемента изменяется под действием измеряемого тока таким образом, что абсолютные приращения напряжения при одинаковых относительных прира­щениях тока остаются неизменными. В зависимости от типа лога­рифмирующего элемента и режима его работы приращение напря­жения на декаду тока лежит в пределах от 50 мВ до нескольких вольт. Поведение логарифмирующего элемента как преобразователя малого тока в напряжение наиболее полно может быть описано его вольтамперной характеристикой. Логарифмирующий элемент шун­тирован сопротивлением изоляции и емкостью между электродами. Влияние шунтирующего сопротивления проявляется в искажении вольтамперной характеристики. Полоса рабочих частот преобразо­вателя определяется емкостью логарифмирующего элемента.

Измерители малых токов с резистивными и емкостными преобра­зователями тока в напряжение для усиления выходного напряже­ния преобразователя, необходимого для работы показывающих или регистрирующих устройств, используют электрометрические усилители (ЭМУ). Входная цепь ЭМУ может быть охарактеризо­вана входным сопротивлением , входной емкостью , эквива­лентным источником напряжения помех и эквивалентным источником тока помех .

Значительное увеличение входного сопротивления ЭМУ полу­чают за счет использования во входном каскаде электростатических измерительных механизмов, электрометрических ламп (с сеточным током до А), динамических конденсаторов (емкостных вибрационных преобразователей постоянного напряжения в напря­жение высокой частоты); варикапов (полупроводниковых управ­ляемых емкостей); МОП -транзисторов (полевых транзисторов с изо­лированным затвором); сегнетодиэлектриков .

Сегнетоэлектрики - класс диэлектриков, обладающий электризованностью в отсутствии внешнего электрического поля.

Если стрелками указать вектора поляризованности, то схематически можно представить

Внешнее поле отсутствует

Методика измерений в электрических цепях

Измерение постоянного и переменного напряжения

Измерение как постоянного, так и переменного напряжения может производиться непосредственно вольтметрами, рассчитанными для работы соответствующего типа напряжения. В тех случаях, когда необходимо измерить напряжение больше того, на которое рассчитан вольтметр, необходимо последовательно с ним включить добавочный резистор. Тогда часть измеряемого напряжения будет падать на добавочный резистор, а часть - на прибор. Подбирая величину сопротивления добавочного резистора, можно в широких пределах расширять возможности измерения больших напряжений. Известно сопротивление вольтметра R пp и выбран коэффициент расширения пределов расширения:



где U x - максимальное напряжение на входе схемы, подлежащее измерению; U пp - максимальные пределы измерения непосредственно вольтметром.


Величина сопротивления добавочного резистора может быть найдена по следующей формуле:


R доб = R пр (n-1)


Обычно для удобства производства отсчетов коэффициент п выбирают кратным 2, 5 или 10.


Для измерения высоких значений переменных напряжений могут быть использованы так называемые измерительные трансформаторы напряжения.


Они представляют собой понижающие трансформаторы, т. е. такие, у которых число витков вторичной обмотки W 2 , к которой подключается вольтметр, меньше числа витков W 1 первичной обмотки. Коэффициент расширения пределов измерения n = W 1 /W 2 . Схемы подключения вольтметров для измерения напряжения приведены на рис. 1.



Рис. 1.

Измерение электродвижущей силы (ЭДС)

Измерение Е имеет свои особенности. При подключении вольтметра к источнику ЭДС для ее измерения через него всегда будет проходить ток, а так как любой источник ЭДС обладает внутренним сопротивлением R вн, то напряжение на таком источнике и вольтметр будет измерять величину меньшую, чем ЭДС Е.


U = E – IR вн


Если нет требований к высокой точности измерения ЭДС, то для уменьшения тока можно воспользоваться вольтметром с большим внутренним сопротивлением, например электронным. В этом случае можно считать, что измеренное напряжение U ~ Е. Более точные методы измерения ЭДС связаны с использованием компенсационных схем (рис. 2).





Рис. 2.


В них напряжение, измеряемое вольтметром PV, снимаемое с переменного резистора R, сравнивается с напряжением на источнике ЭДС.


Изменяя напряжение на выходе переменного резистора (потенциометра), можно добиться такого условия, когда измерительный прибор Р покажет отсутствие тока через источник ЭДС. В этом случае показания вольтметра будут точно соответствовать величине ЭДС источника, т. е. U = Е.

Измерение тока

Можно производить измерение тока непосредственно амперметром, включенным в разрыв измеряемой цепи (рис. 3, а).





Рис. 3.


При необходимости расширить пределы измерения амперметра необходимо параллельно амперметру включить резистор (рис. 3, б), который чаще всего называют шунтом . Тогда через амперметр будет проходить только часть тока, а остальная - через шунт. Так как сопротивление амперметров обычно небольшое, то для существенного расширения пределов измерения сопротивление шунта должно быть очень небольшим. Существуют формулы для расчета сопротивления шунта, но обычно на практике приходится вручную подгонять его сопротивление, контролируя ток эталонным амперметром.


Для измерения больших переменных токов часто используют измерительные трансформаторы токов (рис. 3, в). У них первичная обмотка, включаемая в разрыв измеряемой цепи, имеет число витков W 1 меньшее, чем число витков W 2 вторичной обмотки, т. е. трансформатор является повышающим по напряжению, но по току он понижающий. Амперметр подключается к выходу вторичной обмотки трансформатора тока. Часто лабораторные трансформаторы тока вообще не имеют изготовленной заранее первичной обмотки, а в их корпусе имеется широкое сквозное отверстие, через которое сам экспериментатор наматывает необходимое число витков (рис. 3, г). Зная число витков вторичной обмотки (оно обычно указано на корпусе трансформатора тока), можно выбрать коэффициент трансформации n = W 1 /W 2 и определить измеряемый ток I х по показаниям амперметра I пр по следующей формуле:


I х = I пр /n


Совершенно по-иному производят измерение токов в электронных схемах, которые обычно спаяны, изготовлены на печатных платах; произвести какой-либо разрыв в них практически невозможно. Для измерения токов в этих случаях используют вольтметры (обычно электронные с большим внутренним сопротивлением для устранения влияния прибора на работу электронной схемы), подключая их к резисторам схемы, величины которых либо известны, либо могут быть предварительно измерены. Воспользовавшись законом Ома, можно определить силу тока:

Измерение сопротивлений

Часто при работе с электрическими установками или при наладке электронных схем необходимо производить измерение различных сопротивлений. Простейший способ измерения сопротивлений заключается в использовании двух измерительных приборов: амперметра и вольтметра. С их помощью измеряют напряжение и ток в сопротивлении R, подключенном к источнику питания, и по закону Ома находят величину искомого сопротивления:



Однако этот способ измерения сопротивлений не позволяет получить результаты измерения с высокой точностью, так как на результаты измерения оказывают влияние собственные внутренние сопротивления амперметра и вольтметра. Так, на изображенной на рис. 4, а схеме амперметр измеряет не только ток, проходящий через сопротивление, но и ток, проходящий через вольтметр, чем вносится методическая погрешность измерений.





Рис. 4. Схема для измерения сопротивлений методом амперметра и вольтметра (а) и схема омметра (б)

Этим способом производят измерение обычно в тех случаях, когда нет специальных приборов - омметров. Одна из возможных схем омметра (рис. 4, б) - последовательная. Она состоит из автономного источника питания Е, переменного резистора R и миллиамперметра магнитоэлектрического типа РА. В качестве источника питания обычно используют сухие элементы или батареи напряжением 1,4...4,5 В. Если к выводам прибора подключить сопротивление R x , величину которого необходимо определить, то по цепи пойдет ток, величина которого будет зависеть от величины сопротивления. Так как миллиамперметр измеряет этот ток, то его шкала может быть непосредственно отградуирована в омах. Шкала у такого омметра обратная, т. е. нуль находится в правой части шкалы, так как при сопротивлении на входе, равном нулю (режим короткого замыкания), через амперметр будет протекать максимальный ток. Если внешняя цепь разорвана, что соответствует бесконечно большому сопротивлению на входе, то стрелка миллиамперметра будет находиться в самой левой части шкалы, где стоит знак х. Шкала такого омметра резко нелинейная, что в какой-то мере затрудняет считывание результатов. Переменный резистор омметра служит для установки прибора на нуль перед началом работы с ним. Для этого замыкают выводы омметра накоротко и, вращая ручку переменного резистора, добиваются нулевых показаний прибора. Так как ЭДС элемента питания с течением времени за счет разряда уменьшается, такую установку нуля необходимо периодически контролировать. С помощью подобных омметров можно измерять сопротивления от нескольких омов до сотен килоомов.





Рис. 5. Схемы мегометра (а) и электрического моста (б)


Измерение больших сопротивлений до 100 МОм обычно производят с помощью мегометров (рис. 5, а). В своем классическом виде он представляет собой комбинацию автономного источника питания и измерительного прибора - логометра. Логометр - разновидность магнитоэлектрического прибора, у которого вместо одной рамки имеются две, соединенные жестко между собой под некоторым утлом. Так же, как и в обычном магнитоэлектрическом приборе, с ними связана стрелка прибора и находятся они в магнитном поле постоянного магнита. При пропускании тока через обмотки рамок они создают вращающие моменты противоположных знаков, в результате чего положение стрелки будет зависеть от отношения токов в рамках. В цепь одной из рамок включен резистор R, а в цепь другой - сопротивление R x , величина которого должна быть определена. Применение логометра объясняется тем, что его показания определяются только отношением токов в рамках и не зависят от изменения питающего напряжения U пит. В качестве источника напряжения для мегометра используют либо индуктор, приводимый во вращение рукой оператора, либо аккумуляторную батарею с электронным преобразователем напряжения. Такая система питания определяется тем, что для работы прибора требуются большие напряжения - порядка 500 В, так как при меньших напряжениях токи в обмотках прибора были бы слишком малыми для его нормальной работы. Использование автономного источника питания диктуется тем, что мегометром часто измеряют сопротивление изоляции кабелей; при этом, естественно, напряжение в них бывает отключенным. Кроме того, с его помощью часто проводят измерения вне помещений, где нет электрической сети.


Измерение малых сопротивлений (меньше 1 Ом), а также измерения других сопротивлений в широком диапазоне значений с высокой точностью могут проводиться с помощью электрических мостов.


Электрический мост (рис. 5, б) представляет собой четыре сопротивления (одно из них - R x подлежит измерению), включенные по кольцевой схеме. Каждое из сопротивлений образует плечо моста. В одну диагональ моста подают постоянное напряжение питания U пит, а к другой подключают измерительный прибор - гальванометр Р. Он представляет собой высокочувствительный магнитоэлектрический прибор с нулем посередине шкалы. Его назначение - фиксировать момент, когда ток будет отсутствовать. Приборы подобного типа часто называются нуль-индикаторами. Одно или два сопротивления в плечах моста делаются переменными, и именно ими добиваются нулевых показаний прибора. Мост при этом считается сбалансированным. Как показывает теория электрических мостов, условие баланса достигается при равенстве произведения сопротивлений противоположных плеч, т. е. при условии R 1 R x = R 2 R 3 . Следовательно, после балансировки моста можно, зная величины всех сопротивлений, определить значение неизвестного сопротивления




где N = R 2 /R 1 - множитель.


Точность измерения с помощью мостов постоянного тока может быть очень велика. Результирующие значения сопротивлений могут иметь более пяти значащих цифр. В то же время мост не позволяет оперативно производить измерения, так как процесс балансировки требует определенного времени и навыка оператора.

Измерение емкостей

Определение емкости конденсатора или других устройств емкостного характера также может осуществляться различными способами. Простейший из них - метод амперметра-вольтметра (рис. 6, а).





Рис. 6.


Он во многом аналогичен такому же методу измерения сопротивлений, с той только разницей, что схема питается переменным синусоидальным напряжением от генератора низкой или высокой частоты (или от сети). Емкостное сопротивление конденсатора определяется по следующей формуле:




где f - частота переменного напряжения.


Емкостное сопротивление находится по закону Ома по показаниям приборов




Измерение малых по величине емкостей удобнее производить методом резонанса (рис. 6, б). Измеряемый конденсатор С х подключается к известной индуктивности L, образуя колебательный контур. На контур подается синусоидальное напряжение от генератора. С помощью электронного вольтметра измеряют напряжение на контуре. При резонансе оно достигает максимума.


Известно, что резонансная частота контура может быть выражена следующей формулой:




Следовательно, при известной величине индуктивности в контуре и определенной по максимальным показаниям вольтметра частоте резонанса можно найти искомое значение емкости С х.


Измерение больших емкостей (например, электролитических конденсаторов) проще всего производить путем разряда конденсатора на известное сопротивление R. Известно, что за время, равное постоянной времени цепи разряда конденсатора, его напряжение уменьшается в е раз, где е = 2,71... - основание натурального логарифма. Постоянная времени цепи разряда конденсатора на резистор определяется соотношением



Схема измерения емкости этим методом (рис. 6, в) состоит из источника постоянного напряжения питания, известного по величине сопротивления резистора R, электронного вольтметра PV, переключателя S и клемм для подключения конденсатора. С помощью переключателя S конденсатор С х заряжается до напряжения источника питания, а после переключения конденсатора на разряд с помощью секундомера измеряют время t, по истечении которого конденсатор разрядится до напряжения U пит /е. Емкость конденсатора определяется по формуле



Емкости конденсаторов можно измерять также с помощью мостов переменного тока.

Измерение индуктивностей

Измерение индуктивностей несколько сложнее. Это связано с тем, что любая катушка (обмотка трансформатора и т. п.) имеет кроме индуктивности еще и резистивное сопротивление. Поэтому во многих случаях измеряют предварительно полное сопротивление катушки индуктивности:




Оно может быть определено методом амперметра и вольтметра путем измерения напряжения и тока измерительными приборами схемы на переменном напряжении (рис. 7, a) z = U/I. При подаче на схему постоянного напряжения (рис. 7, б), как уже рассматривалось выше, можно определить резистивное сопротивление катушки R.





Рис. 7.





В свою очередь, индуктивное сопротивление




При известном значении частоты / напряжения питания легко найти величину искомого значения индуктивности



При малых значениях индуктивности (например, контурных катушек радиоэлектронных устройств) можно воспользоваться резонансной схемой, аналогичной схеме определения емкости резонансным методом.


Для измерения индуктивности можно использовать также мосты переменного тока, специальные измерительные приборы - ку- метры, позволяющие определять не только величину индуктивности, но и такую характеристику, как добротность катушки, характеризующие качество работы катушки в электронных схемах.

Измерение мощности

В электрических цепях измерение мощности удобнее рассматривать отдельно для цепей постоянного и переменного тока.


На постоянном токе основные формулы для определения мощности следующие:




В соответствии с приведенными формулами мощность в каком-то сопротивлении нагрузки R можно измерить тремя способами: с помощью вольтметра и амперметра (рис. 8, а), только вольтметром (рис. 8, б) и только амперметром (рис. 8, в). Во всех случаях после снятия показаний с приборов необходимо провести математические расчеты для определения собственно мощности.





Рис. 8.


Этого можно избежать, если для измерения мощности воспользоваться специальным прибором ваттметром (рис. 8, г). Как правило, выпускаемые промышленностью ваттметры изготавливаются на базе ферродинамического прибора (см. рис. 2.105). У ваттметров имеются две обмотки и соответственно четыре вывода. Одна из обмоток является токовой, через нее проходит ток к нагрузке, расходуемая мощность в которой подлежит измерению, а вторая - обмоткой напряжения. Она подключается непосредственно к источнику питания.


Измерение мощности на переменном токе имеет свои особенности. Во-первых, здесь существуют три различные мощности:


полная мощность, В * А,



активная мощность, Вт,



реактивная мощность, вар,



В этих формулах (φ - угол сдвига по фазе между током и напряжением.


Чаще всего интересуются полной и активной мощностями. Знание полной мощности необходимо для расчета токов в нагрузке, выбора сечения проводов и предохранителей. Активная мощность важна потому, что именно она характеризует ту мощность, которая в нагрузке преобразуется в теплоту, свет, звук и т.д.


Измерение полной мощности обычно производят, измеряя напряжение и ток вольтметром и амперметром и перемножая полученные значения. Активную мощность чаще всего измеряют с помощью ферродинамических ваттметров, которые кроме напряжения и тока учитывают и так называемый коэффициент мощности cosφ.


При подключении обмоток ваттметра к нагрузке, так же как и при постоянном напряжении, ваттметр непосредственно произведет измерение активной мощности.


На переменном токе достаточно часто приходится решать задачу измерения активной мощности в трехфазных цепях. Трехфазные цепи могут быть двух типов: трехпроводные и четырехпроводные. В трехпроводных цепях к нагрузке подходят три провода, обозначаемые буквами А, В, С. Для измерения активной мощности в такой цепи при любом варианте подключения элементов нагрузки к проводам достаточно подключить только два ваттметра так, как это показано на рис. 9.





Рис. 9. : а - трехпроводная система; б - четырехпроводная система


При этом необходимо соблюсти определенные правила подключения ваттметров. Выводы обмоток ваттметра, обозначенные на его корпусе звездочками, должны быть обращены в сторону источника энергии. Поэтому эти выводы получили название генераторные (подключаются к проводам, идущим от генератора). Суммарная активная мощность такой трехфазной системы находится как алгебраическая сумма показаний двух ваттметров. При этом возможен вариант, когда показания одного из ваттметров могут быть отрицательными, т. е. его стрелка уйдет влево. Для снятия показаний с такого ваттметра необходимо поменять местами провода, подходящие к любой из обмоток, прочесть результат измерения, но в формулу подставить с отрицательным знаком.


Измерение активной мощности в четырехпроводных цепях требует использования трех ваттметров. Один из выводов каждого ваттметра здесь подключается к четвертому проводу, обычно называемому нулевым. Показания всех ваттметров могут быть только положительными, и суммарная активная мощность, потребляемая трехфазной цепью, будет равна сумме мощностей, измеряемых каждым из ваттметров:


Р е = Р 1 + Р 2 + Р 3 .


Один из наиболее простых методов измерения количества электричества - метод измерения с помощью так называемого баллистического гальванометра. Он представляет собой прибор магнитоэлектрической системы (см. рис. 2.103) с умышленно утяжеленной подвижной частью (с большим моментом инерции). Если на вход такого баллистического гальванометра подать кратковременный импульс напряжения, то подвижная часть прибора, получив как бы импульсный вращающий момент, начнет движение, причем уже после окончания входного импульса это движение еще будет продолжаться и стрелка прибора, двигаясь по инерции, отклонится до какого-то значения шкалы, а затем возвратится в исходное нулевое положение. В качестве отсчета на таком приборе необходимо отметить то максимальное отклонение стрелки α mах от нулевого значения, которое наблюдалось во время ее движения по «баллистической траектории». Теория такого баллистического гальванометра показывает, что этот отсчет по максимальному отклонению стрелки оказывается пропорциональным количеству электричества, прошедшего через рамку такого прибора, т. е.


α mах = Q/С 6 ,


где С б -баллистическая постоянная, зависящая от конструктивных особенностей гальванометра.


Измерение количества электричества Q на обкладках предварительно заряженного конденсатора можно осуществить, разрядив его через баллистический гальванометр, и по максимальному отклонению его стрелки найти искомое значение количества электричества:


Q = С 6 α mах


При разработке новых сплавов, предназначенных для использования в электротехнических цепях, возникает необходимость в определении их удельного сопротивления. Под удельным сопротивлением понимают сопротивление проводника сечением 1 мм 2


и длиной 1м. Соответственно такое удельное сопротивление р измеряется в единицах Ом - (мм 2 /м). Для его измерения выбирают отрезок проводника, желательно небольшого сечения, и измеряют его сопротивление любым из рассмотренных выше методов. После этого расчетным путем приводят величину этого сопротивления к сечению 1 мм2 и длине 1 м, что не представляет каких- либо трудностей, и получают значение удельного сопротивления. Для получения большей точности измерения желательно длину проводника брать по возможности большей.


Для многих изоляционных материалов представляет определенную ценность определение их диэлектрической проницаемости ε. Одним из простейших способов ее измерения является способ косвенного измерения с последующим расчетом величины диэлектрической проницаемости. Известно, что емкость простейшего конденсатора, состоящего из двух одинаковых пластин площадью S, расположенных на расстоянии δ друг от друга, с диэлектриком, заполняющим все пространство между пластинами, определяется по формуле




где ε - диэлектрическая проницаемость материала между пластинами.



Рис. 10. Схема для измерения диэлектрической постоянной изоляционных материалов


Измерение диэлектрической проницаемости материала производят с помощью конденсатора (рис. 10), между пластинами которого помещают испытуемый материал, а также измерения емкости такого элементарного конденсатора любым из описанных выше методов. Численную величину диэлектрической проницаемости определяют по формуле




Развитие радиоэлектроники и установок для высокочастотного воздействия на материалы машиностроения привело к тому, что практически все пространство заполнено электромагнитными волнами.


В мире работают миллионы передающих радиостанций, многие из которых излучают значительные мощности (например, радиолокационные станции дальнего обнаружения, вещательные радиостанции и т. п.). Для оценки электромагнитных волн часто возникает необходимость определения их уровня. Обычно об уровне электромагнитных волн судят по напряженности электрического поля, величина которого аналитически может быть пересчитана в мощность электромагнитного поля. Напряженность электрического поля наиболее часто измеряют с помощью рамочной антенны (рис. 11), которая представляет собой плоскую катушку, намотанную на каркас Е из какого- либо диэлектрика. (На рис. 11 для простоты изображен только один виток.)





Рис. 11.


Диаграмма направленности такой антенны показывает, что максимум принимаемого излучения идет со стороны, лежащей в плоскости витков катушки. Это позволяет не только производить измерение напряженности электрического поля, но и определять направление на источник высокочастотных излучений по максимальной величине напряжения на выходе рамки при ее поворотах относительно вертикальной оси. Напряженность электрического поля определяется по величине напряжения на выходе рамки по следующей формуле, В/м:




где U - напряжение на выходе рамки, В; f - частота принимаемого сигнала, Гц; n - число витков в рамке; S- площадь рамки, м 2 .


Обычно на геометрические размеры рамки в зависимости от частоты сигнала напряженность поля которого определяется, накладываются определенные ограничения. В частности, на частотах более 30 МГц более точные результаты получаются, если вместо рамочной антенны использовать полуволновый диполь, представляющий собой проводник длиной в половину длины волны, разрезанный посередине. Напряжение с диполя снимается с центральной разрезанной части. Значение напряженности электрического поля можно определить по следующей формуле:




где f- частота, Гц; U- напряжение на выходе диполя, В.


Диполь, так же как и рамка, позволяет определять направление, с которого приходит сигнал, так как обладает определенной направленностью, что видно из диаграммы направленности. Максимум принимаемых сигналов определяется перпендикуляром к плоскости диполя. Именно так ориентированы телевизионные антенны по отношению к телевизионной вышке.


Напряжение на выходе рамки или диполя можно измерять с помощью электронного вольтметра непосредственно при сильных сигналах или применяя электронные усилители. В этом случае, используя селективные свойства усилителей, можно определить уровень напряженности электрического поля определенной частоты. Нужно учесть, что уровень сигнала на выходе рамки и частично диполя складывается из большого числа электромагнитных полей, существующих в пространстве в районе расположения приемного устройства от различных источников (передатчиков).


При необходимости определить частоту высокочастотного сигнала можно, если он сильный, используя непосредственное включение электронного частотомера на выход рамки или диполя. При слабых сигналах и использовании усилителей можно по их частотной настройке определять частоты сигналов, наведенные в рамке или диполе, т. е. так, как обычно по шкале радиоприемника можно определить длину волны или частоту принимаемой станции.

В век технических достижений электричество ценится на вес золота. Чтобы его измерить, нужен прибор для измерения напряжения. Но аппарат и его разновидности существенно отличаются по параметрам и принципу действия.

В результате прямых и косвенных измерений становятся известны конкретные данные физической величины.

Прямые отображают результат на шкале напрямую. Определение косвенных производится с помощью вычислений нужных параметров. Последний способ значительно точнее. Измерения проводятся в электротехнических и радиотехнических цепях.

Вольтаж измеряют оборудованием

Напряжение измеряется от одной точки до другой и характеризируется силой переноса из конца цепи A в B. Отображается величина с помощью буквы V. Единица напряжения - Вольты. Для облегчения, показатель разделяется на кило-, милли- и микро- единицы. Измеритель может быть электромеханическим, электронным, цифровым или электронным.

Вольтметры

Именно этот прибор учат, измеряя напряжение на уроках физики. Действие измерителя основано на законе Ома. Измерение производится с помощью электромагнитного поля. Характеристики аппарата улучшаются при высоком внутреннем сопротивлении и широком диапазонном значений. Приборы, определяющие кило-, милли- и микро-единицы условно имеют название киловольтметров, милливольтметров и микровольтметров. Последние два диапазона имеют минимальную погрешность.

Знать вольтаж цепи необходимо

Вольтметры бывают 2 видов.

Электронный - высокочувствительный аппарат с большим сопротивлением. Позволяет определить широкие пределы значений. Отличается добавлением к основному механизму преобразователя. Такие приборы требуют ток в качестве источника питания. Известны аналоговые и цифровые вольтметры. Первые действуют, переводя входное переменное напряжение на постоянное, постепенно отклоняя стрелку. ИП также включает в себя шкалу. При течении тока в противоположном направлении, стрелка смещается влево, при обычном - вправо. Таким образом, следует учитывать положительное напряжение или отрицательное. Цифровые вольтметры сразу считывают показатель напряжения на входе и выводят данные на табло. Точность зависит от качества аналого-цифирного преобразователя, но оцифрованные вольтметры все же имеют меньшую погрешность, чем аналоговые.

Электронные модели широко распространены

Электромеханические отличаются тем, что им не нужен токовый источник для работы. После подключения к цепи вольтметра, прибор определяет входное значение, которое уменьшается с помощью специального внутреннего или внешнего резистора. Внутренние резисторы последовательно подсоединяются изнутри корпуса, внешние - с наружной стороны. Прибор компактный и стоит недорого, но может потреблять мощность из цепи. Диапазон измерения не сильно широкий, поэтому не всегда может быть получен точный результат.

Электромеханический не требует батареек

А именно:

  • Импульсный. Поможет справиться с перебоями в сети. Проверяет напряжение одиночного импульсного сигнала. Благодаря этому можно выяснить, на каком участке цепи появилась помеха, и устранить ее.
  • Фазочувствительный. Значение выводится посредством преобразования постоянного или минимально меняющегося напряжения. Табло выдает общий результат.
  • Селективный. Прибор узкополосный, избирательным путем дает понятие об амплитуде и частоте одной из частей, не отключая другую. Аппарат нужен, если требуется вычленить некоторые составляющие большого участка.
  • Универсальный. Сочетает в себе все виды вольтметров, позволяет определять электродвижущую силу на разных участках и при любых условиях.
  • Вольтметры для постоянного и переменного тока определяют соответствующие величины.

Универсальный аппарат более удобен

Переносными, стационарными и щитовыми могут быть приборы, в зависимости от возможности перемещения, размеров и конструкционных особенностей.

А именно:

  • Щитовые. Предназначены для нахождения в специальных шкафах. После приобретения, они устанавливаются и находятся в месте монтажа. Переносить можно, но редко и аккуратно.
  • Стационарные. Ввиду громоздкости перенести их будет трудно. Неудобства использования перекрываются высокими техническими характеристиками, точностью и большой шкалой измерений.
  • Переносные. Не требуют подключения к источнику энергии, доступны к свободному перемещению. Компактные, находятся в аккуратном корпусном чехле.

Есть стационарные модели

Потенциометр

Потенциометром может называться устройство-регулятор тока. Представляет собой 3-х выводной, открытый переменный резистор. В большинстве случаев имеет отводной контакт. Особое распространение получил при работе с аудиосистемами и в сфере автомобильной промышленности.

При работе один из выводов подключается к контакту, два других - отводные. Основа изготавливается из углеродных и керамических материалов.

Разделяются по принципу действия:

  • Линейные. Сопротивление измеряется пропорционально углу, который зафиксирован при повороте контакта. Делятся на одинарный (одноканальный), двойной (двухканальный) и многооборотный вариант.
  • Логарифмические. Потенциометр изменяет сопротивление сначала быстро, затем скорость уменьшается.
  • Экспотенциальные. Потенциометр изменяет сначала медленно, затем скорость увеличивается.

Иногда припаиваются к плате

Корпус может быть монтажным или стационарным. В первом случае устройство монтируется на плате, во втором - остается на корпусе. Оборотные делятся на однооборотные или многооборотные, а также сдвоенные. Если однооборотные совершают 1 оборот, многооборотные - более чем 5, то сдвоенные на каждом валу имеют 2 резисторных элемента. Чаще всего многооборотные делают от 5 до 15 оборотов.

Есть аналоговые модели

Мультиметр

Комбинированное устройство с доступным для нескольких приборов функционалом. Может измерять силу тока, напряжение и сопротивление цепи и ее частей. Может включать и большее количество измерителей.

К сведению. Функции вольтметра, амперметра и омметра исполняет любая модель.

Подходит для работы с переменным и постоянным током. Из-за хорошей эффективности многие предпочитают использовать именно его.

Аппарат спрятан в корпусный чехол, на верхней стороне имеет дисплей или шкалу измерений. Нижняя сторона оснащена панелью управления. Центральная часть панели управления отведена под кнопки переключения режимов и переключатель измерений. Питается с помощью батареек, преимущественно прямоугольных.

Есть цифровые модели

Бывают 2 видов:

  • Аналоговые. Со стрелочной шкалой в верхней части наружной панели. Некоторые модели измеряют Вольты и Амперы без, а Омы - с питанием. Во время измерения можно увидеть динамику.
  • Цифровые. Имеют ЖК-экран, на который выводятся показания. Просты в использовании, имеют понятный интерфейс.

В комплекте идут 2 щупа, красный и черный.

Аппарат может показать амплитуду сигнала

Осциллограф

Прибор, измеряющий электрические сигналы и их колебания, будет называться осциллографом. Важен при работе с электроникой. Показывает работу любого, даже минимального импульса. С помощью специального устройства, идущего в комплекте, может соединиться с сетью, сигналом или внешним источником.

Визуально выглядит, как телевизор, позволяющий осуществлять наблюдение в текущем режиме. Если сигнал подается на канал вертикально, отображается на табло полосой вверх. Имеет также модуляционный диапазон, работающий с лучами, лучевую трубку и блок питания. Может быть аналоговым и цифровым. Цифровые приборы имеют встроенную память и могут сохранять определенное количество предыдущих измерений.

Электрический импульс, измеряемый осциллографом, облегчает работу с автомобилем и активно используется в медицинских целях.

Осциллографы наиболее точны из всех остальных

Подразделяются на:

  • Специализированные. Предназначены для конкретного устройства.
  • Стробоскопические. Наблюдают за кратковременными импульсами, склонными к повторению.
  • Скоростные. Измеряют «быстрые» импульсы.
  • Запоминающиеся. Имеют небольшую память для сохранения сигнала.
  • Универсальные. Своего рода симбиоз - включает несколько различных видов осциллографов.

Самый простой вариант измерителя

Электрометр

Электрометром можно назвать прибор для измерения электрического потенциала и разностей его величин. Является усовершенствованной версией электроскопа. Электрический заряд определяется с помощью стержня - основания конструкции. К основанию подвешиваются 2 бумажки или 2 кусочка фольги, параллельно друг другу. Стержень надежно защищен металлическим корпусом и закрыт стеклянной пробкой. Присутствие заряда запускает реакцию «отталкивания». Сила реакции зависит от его величины. Реакция идет в обе стороны, поэтому притяжение индикаторов дает понять, что заряд отрицателен.

Как правильно эксплуатировать

Инструкция:

  1. Собрать информацию по технической неполадке.
  2. Проверить отсутствие повреждений на измеряемом субъекте.
  3. Подсоединить щупы в гнезда.
  4. Включить устройство и выбрать нужный режим. Уточняют, постоянное или переменное напряжение будет измеряться.
  5. Измерение производится параллельно сети.
  6. Считать результат на шкале или табло.

Подсоединение осуществляется параллельно

Единицы измерения

Величина измеряется в вольтах. Обозначается буквой V, русская В.

Правила безопасности

Стоит обратить внимание:

  • Обязательно обеспечение заземления.
  • Прибор и цепь не трогаются голыми руками.
  • При возникновении непредвиденных ситуаций, немедленно прекратить работу и убедиться, что измерение не несет последствий. Например, не создастся пожар.
  • Прибор подсоединяется параллельно к уже собранной цепи.
  • Рабочее место должно быть изолировано от посторонних.
  • Измеряющий должен иметь представление о технике безопасности, знать устройство прибора и принцип его действия.
  • Цепь должна быть правильно собрана.
  • По окончании работы устройство отключается и разбирается, укладывается на место хранения в соответствующих чехлах. Рабочий снимает средства защиты и тщательно обрабатывает руки.

Стоит работать в перчатках

Ответ на вопрос, как называется прибор для измерения электрического напряжения, очень прост, как и сама процедура проведения. Главное - действовать аккуратно и бережно относиться к оборудованию. В таком случае аппаратура прослужит века.

· Измерение тока

Для измерениятока используетсяамперметр , включаемый в цепь последовательно с электроприемником (см. рис. 2.7.). Показания амперметра позволяют судить с определенной погрешностью (см. разд. 2.5) о токе I Н, протекающем через данный электроприемник – нагрузку R Н.

Рис. 2.7. Схема включения амперметра для измерения тока

При измерении переменного синусоидального тока приборы электромагнитной, электродинамической, выпрямительной и тепловой систем будут давать отклонения, пропорционально действующему значению тока и в этих значениях, как правило, градуируют шкалы этих приборов.

При измерении несинусоидального переменного тока появляется дополнительная погрешность, вызванная влиянием высших гармоник в кривой тока на вращающий момент подвижной части и отклонение стрелки и, следовательно, на показания прибора.

Сопротивление измерительной катушки амперметра очень малои его последовательное включение с нагрузкой практически не вызывает увеличение сопротивления цепи и потери мощности. Так, внутреннее сопротивление амперметров колеблется от R А =0,2 Ом (электромагнитные и электродинамические системы амперметров) до R А = 0,01 Ом (магнитоэлектрические приборы).

Ошибочное включение амперметра не последовательно, а параллельно электроприемнику (нагрузке) приводит к его подключению на сравнительно высокое напряжение и практически к короткому замыканию цепи . В этом случае, протекающий через амперметр ток I КЗ станет намного больше номинального тока I Н (I КЗ /I Н = 10 ¸ 1000), и будет ограничен только малым собственным сопротивлением катушки прибора. Большой ток вызовет чрезмерно большое тепловыделение в проводе катушки (Р =(I КЗ) 2 R А), быстрый перегрев катушки и перегорание ее проводников, после чего амперметр выходит из строя.

Поэтому необходимо тщательно проверять правильность включения амперметра в измеряемой схеме до того, как к ней подано напряжение!

· Расширение пределов измерения амперметра

Для расширения пределов измерения амперметров применяют шунты и измерительные трансформаторы тока .

Шунт представляет собой активное сопротивление (резистор) R Ш сравнительно малой величины, включаемое параллельно к зажимам амперметра (рис. 2.8).

Рис. 2.8. Схема включения амперметра с шунтом для измерения больших токов

В том случае, когда сопротивление шунта R Ш меньше сопротивления измерительной катушки амперметра R A , сравнительно большая часть измеряемого тока I Н проходит через шунт, а в амперметр ответвляется только его небольшая часть I A , определяемая соотношением сопротивлений амперметра R A и шунта R Ш:

. (2.10)

Шкала амперметра с шунтом градуируется на полный ток I Н, протекающий через нагрузку.

Таким образом, использование в амперметрах шунтов позволяет измерять большие постоянные или синусоидальные токи приборами, измерительные катушки которых рассчитаны на малые токи.

Трансформатор тока используется для расширения пределов измерения в цепях переменного тока и включается по схеме, представленной на рис. 2.9. Первичная обмотка W 1 трансформатора тока зажимами Л 1 и Л 2 включается в линию переменного тока последовательно с электроприемником (нагрузкой R H). Ко вторичной обмотке трансформатора тока через зажимы И 1 и И 2 подключается амперметр и, в случае необходимости, катушки других измерительных приборов (ваттметра, счетчика электроэнергии и др.), которые соединяются между собой последовательно.

Рис. 2.9. Схема включения трансформатора тока в измерительную цепь

Трансформатор тока работает в условиях, близких к условиям короткого замыкания. Поэтому можно считать что:

, (2.11)

то есть, первичный ток I 1 определяется умножением вторичного тока I 2 , измеряемого амперметром, на постоянный коэффициент трансформации К I , который больше единицы, поскольку у трансформатора тока W 2 > W 1 .

Номинальный ток вторичной обмотки у трансформаторов тока принимается равным 5А, независимо от коэффициента трансформации .

Шкала амперметра, использующего трансформатор тока, градуируется на первичный ток. На ней указывается с каким трансформатором тока должен быть включен амперметр (например, 100/5 А, 200/5 А и т.д.). Вторичная цепь трансформатора тока должна быть всегда замкнута . В целях электробезопасности один зажим вторичной обмотки и стальной кожух трансформатора заземляются.

Помимо расширения пределов измерения, трансформаторы тока электрически отделяют цепи низкого напряжения измерительных приборов от главных цепей, которые могут находиться под высоким напряжением.

· Измерение напряжения

Для измерения напряжения используются вольтметры . Зажимы этих приборов включаются параллельно нагрузке , как показано на рисунке ниже.

Рис. 2.10. Схема включения вольтметра для измерения напряжения

Чтобы включение вольтметра не приводило к заметному изменению токов в цепи и режима работы нагрузки, его собственное сопротивление R B должно быть намного больше сопротивления нагрузки R H . Оно колеблется от 3–5 кОм (электромагнитные и электродинамические приборы) до 6–10 кОм (магнитоэлектрические приборы) и свыше 10 кОм (электронные приборы).

При таком включении вольтметра отклонение его стрелки будет пропорционально напряжению на том участке цепи, к которому он подключен.

Вольтметры переменного тока указывают действующее значение измеряемого напряжения.

При ошибочном включении вольтметра, то есть последовательно с электроприемником, напряжение которого должно быть измерено, прибор не будет поврежден, так как через него будет протекать ничтожно малый ток из-за очень большого внутреннего сопротивления вольтметра. В то же время, показания вольтметра при таком включении будут неверны, так как напряжение на нагрузке значительно уменьшится (в сотни и тысячи раз), а вольтметр будет показывать напряжение, близкое к напряжению источника питания.

· Расширение пределов измерения вольтметра

Для расширения пределов измерения вольтметра используют добавочное активное сопротивление R Д, включаемое последовательно с измерительной катушкой вольтметра.

Рис. 2.11. Схема включения вольтметра с добавочным сопротивлением
для расширения пределов измерения напряжения

Величина добавочного сопротивления R Д рассчитывается, исходя из требуемой кратности расширения предела измерения n u

n u = U Н /U B (2.12)

по формуле:

R Д = R B (n-1), (2.13)

где U Н – измеряемое напряжение на нагрузке, U B – напряжение на вольтметре,
R B – активное сопротивление измерительной катушки вольтметра.

С помощью разных добавочных сопротивлений можно получить многопредельный вольтметр с разной ценой деления шкалы.

В цепях переменного тока напряжением свыше 1000 Вдля расширения пределов измерения высокого напряжения используютизмерительные трансформаторы напряжения , включаемые по схеме, представленной на рисунке ниже

Рис. 2.12. Схема включения трансформатора напряжения с вольтметром
в измерительную цепь

Первичная обмотка трансформатора напряжения (зажимы «А» и «Х»), которая является обмоткой высшего напряжения с большим числом витков W 1 , подключается к измеряемому высокому напряжению U 1 , а вторичная обмотка W 2 , являясь обмоткой низкого напряжения (зажимы «а» и «х») замыкается на вольтметр и цепи напряжения других приборов: ваттметра, счетчика электроэнергии, частотомера и др. Все эти приборы присоединяются к обмотке трансформатора низшего напряжения параллельно.

Трансформатор напряжения работает в условиях, близких к режиму холостого хода . Поэтому можно считать, что

, (2.14)

то есть первичное высокое напряжение U 1 может быть определено умножением вторичного напряжения U 2 на постоянный коэффициент трансформации
K U = W 1 /W 2 больше единицы, поскольку в трансформаторе напряжения W 1 >W 2 .

Вторичное номинальное напряжение у трансформатора напряжения принимается равным U 2 = 100 В, независимо от коэффициента трансформации.

Шкала вольтметра градуируется на первичное напряжение. На ней указывается, с каким трансформатором напряжения должен включаться вольтметр (например, 6000/100 В, 10000/100 В и т.д.). Обмотки трансформатора напряжения защищены плавкими предохранителями F 1 и F 2 (см. рис. 2.12).

Помимо расширения пределов измерения приборов переменного тока, трансформаторы напряжения отделяют цепи низкого напряжения измерительных приборов от главных цепей высокого напряжения .

В целях электробезопасности один зажим вторичной обмотки и стальной кожух трансформатора напряжения заземляются, как показано на рисунке

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: